# SAFETY REPORT 

December 2013

Prepared by:
Felsburg Holt \& Ullevig 6300 South Syracuse Way, Suite 600 Centennial, CO 80111

303/721-1440

# I-70 EASTBOUND PEAK PERIOD SHOULDER LANE (PPSL) SAFETY REPORT 

Prepared for:<br>Colorado Department of Transportation Traffic \& Safety Engineering 4201 East Arkansas Avenue Denver, CO 80222

## Prepared by:

Felsburg Holt \& Ullevig
6300 South Syracuse Way, Suite 600
Centennial, CO 80111
303/721-1440
Project Manager: David E. Hattan, PE, PTOE
TABLE OF CONTENTS
Page
EXECUTIVE SUMMARY ..... -
1.0 INTRODUCTION ..... 1
2.0 CURRENT SAFETY CONDITIONS ..... 4
3.0 OVERVIEW OF PPSL CONCEPT ..... 6
3.1 Typical Section ..... 6
3.2 Access and Egress Provisions ..... 9
3.3 Emergency Pull-outs ..... 9
3.4 Speed Limits ..... 10
3.5 Roadway Striping ..... 10
3.6 Roadway Signing ..... 10
4.0 SAFETY FINDINGS FOR SIMILAR INSTALLATIONS ..... 11
4.1 Deployments in the United States ..... 12
4.2 Deployments in Europe ..... 13
5.0 SAFETY CONCERNS WITH PPSL ..... 15
5.1 Safety Analysis of Geometric Changes ..... 16
5.2 Safety Analysis due to Congestion Reduction ..... 17
5.3 General Observations concerning PPSL Elements ..... 19
6.0 SUMMARY AND RECOMMENDATIONS ..... 22
6.1 Safety Findings for Similar Installations ..... 22
6.2 Safety Concerns with PPSL ..... 23
6.3 General Safety Observations Concerning PPSL Elements ..... 24
6.4 General Safety Conclusions ..... 25
7.0 REFERENCES ..... 26
LIST OF APPENDICES
APPENDIX A SAFETY ASSESSMENT REPORT - STATE HIGHWAY 70A - MP 230.00 TO MP 242.00 - REGION 1, OCTOBER 25, 2013
APPENDIX B SAFETY IMPLICATION OF GEOMETRIC CHANGES USING CRASH MODIFICATION FACTORS (CMF)
APPENDIX C SAFETY IMPLICATIONS OF CONGESTION REDUTION
APPENDIX D MANAGED LANE ACCESS AND VARIABLE SPEED LIMITS (MEMORADUM DATED NOVEMBER 4, 2013)

## LIST OF FIGURES

PageFigure 1. Project Area/Vicinity Map ..... 2
Figure 2. Minimum Recommended Typical Cross-Section ..... 7
Figure 3. Typical Cross-Section with Lane Assignments ..... 8
Figure 4. Corridor Specific SPF for I-70, Weekend in Winter (Eastbound Flow) ..... 18
Figure 5. PPSL Corridor Volumes Superimposed on I-70 SPF ..... 19
LIST OF TABLES
Table 1. Minimum Lane and Shoulder Widths ..... 7
Table 2 Left-Side vs. Right-Side PPSL ..... 8
Table 3. Proposed Emergency Pull-out Summary with Ramp Locations ..... 9
Table 4. Crash Modification Factors (CMF) ..... 16

## EXECUTIVE SUMMARY

The I-70 Mountain Corridor experiences high levels of weekend traffic congestion. The highest volumes are recorded eastbound on Sunday afternoons as recreational travelers make their way back from the mountains to the Denver metro area. The worst and most consistent delays along the I-70 Mountain Corridor occur from Georgetown to the Twin Tunnels just east of Idaho Springs.

In order to provide more eastbound capacity for peak conditions, the Colorado Department of Transportation (CDOT) is investigating ways to improve operations on an interim basis without a significant construction project. The I-70 Eastbound Peak Period Shoulder Lane (PPSL) project would utilize the shoulder to provide a third eastbound travel lane during peak periods from US 40 at Empire Junction to east Idaho Springs. During peak periods when the shoulder lane is being utilized, it would operate as a tolled express lane (Managed Lane). The PPSL would serve as an extension of the third eastbound lane that was recently opened to traffic. This construction project widened I-70 eastbound only and extended from the East Idaho Springs interchange (Exit 241) to the US 6 interchange (Exit 244) at the base of Floyd Hill. Initiating the PPSL at Empire Junction recognizes the fact that US 40 adds a significant amount of traffic to I-70 during peak eastbound periods.

A thorough analysis of safety in the PPSL corridor was completed for this project. The most predominant crash types were found to be fixed object type crashes (concrete barrier, guard rail, embankment and walls), rear end type crashes, and sideswipe same direction type crashes. These crash types comprise approximately 82 percent of the crashes along the corridor. In general, there are several factors that contribute to the cause of crashes along the study corridor. Some of the primary factors include; the horizontal curvature of I-70, travel speed, traffic congestion due to weekend traffic, direction of travel and inclement weather / road conditions. Rear end type and sideswipe same direction type crashes typically occurred on winter weekends when traffic congestion is more likely. These rear end and sideswipe type crashes occurred more frequently in the eastbound direction because this direction experiences higher traffic congestion. In fact, almost 50 percent of the eastbound rear end crashes occur on Sundays. In addition, there were several locations that the horizontal curvature of the roadway made rear end accidents more frequent due to the inability for vehicles to see stopped traffic ahead.

There are a number of implementations where safety shoulders are used as travel lanes to increase the efficient utilization of highway capacity. In the United States, the primary use of shoulders has been as a safety refuge area. Several states have deployed temporary shoulder use for all vehicles on congested corridors with success. While the number of deployments is limited, overall experience utilizing shoulders for interim use (known as dynamic shoulder use or DSU) has been positive in the United States. In Europe, part-time shoulder use is a congestion management strategy typically deployed in conjunction with complementary traffic management strategies - such as variable speed limits (speed harmonization) and/or ramp metering. European agencies have realized both safety and mobility benefits as a result of these projects.

The Concept of Operations report for this study provides a comprehensive overview of the most significant construction and elements of the planned project. To the greatest extent possible, the existing roadway cross section will be utilized without widening. The minimum typical
cross-section recommended by the project team is 39 feet. From left to right, this will allow a 12foot inside shoulder during off-peak periods (1-foot shoulder and 11-foot managed lane during peak periods), 11 and 12 -foot general purpose lanes, and a 4 -foot outside shoulder. Through the evaluation of operational concerns (such as driver expectancy and the higher anticipated speeds during PPSL operations), lessons learned from other states, meetings with the emergency responders within the project limits, and the commercial vehicle operations representatives, it was determined that the left-side PPSL was the preferred alternative.

Safety was analyzed in a quantitative manner based on the geometric features and changes in the level of congestion that are inherent to the PPSL concept. The safety analysis of geometric elements determined that changes to the number of lanes, their widths, and the shoulders (while utilizing the existing pavement section, for the most part) may result in a decrease in safety (increased crashes). However, reduced congestion (due to the additional travel lane available when the Managed Lane is operating) may improve safety through a decrease in rearend crashes resulting from less stop-and-go traffic. Overall, the calculations result in a small forecasted improvement in safety.

There are a number of decisions about how the various elements of the PPSL will be configured. A qualitative assessment was made of their potential impacts to safety and how measures will be included in the design for the PPSL that minimize potential adverse impacts to safety. These design elements include merge and diverge areas, access and egress points, variable speed limit signs, emergency pull-outs, monitoring of operations by CDOT staff, signing, opening and closing procedures, and emergency response.

### 1.0 INTRODUCTION

The I-70 Mountain Corridor experiences high levels of weekend traffic congestion, with the highest volumes recorded eastbound on Sunday afternoons as recreational travelers make their way back from the mountains to the Denver metro area. The worst and most consistent delays along the I-70 Mountain Corridor occur from Georgetown to the Twin Tunnels just east of Idaho Springs.

During both the summer and winter peak season, traffic volumes throughout the I-70 Mountain Corridor are highest on weekends when recreational travelers comprise the vast majority (more than 90 percent) of trips through the Twin Tunnels area. The summer season (June through September) generates the highest average daily volumes due to the dispersed recreational opportunities that the mountains of western Colorado provide. The second highest season (December through March) results from the winter recreation activities (primarily skiing) centered on mountain resorts. Many visitors drive to the mountains on Friday or Saturday for recreational activities and return to the Denver metropolitan area on Sundays in order to be at work on Monday morning. Thus, Sundays have the highest volumes of the week, contributing significantly to eastbound congestion on most Sundays during these two peak seasons. Holidays can also result in high eastbound volumes. The majority of this congestion happens in the segment between Georgetown and the Floyd Hill area (see Figure 1) for the following reasons:

- Heavy traffic volumes enter and exit I-70 at U.S. Highway 40 (US 40)/Empire Junction just to the east of Georgetown; the interchange serves numerous recreational opportunities in Grand County that use Berthoud Pass.
- The Twin Tunnels segment (located between Idaho Springs and Floyd Hill) were operationally constrained because of the narrow shoulder widths, but again this has been addressed in the eastbound direction with the current Twin Tunnels Widening project.

I-70 currently carries two travel lanes in each direction within the Project corridor, while construction was recently completed on the Twin Tunnels segment to the east of the project to add a third eastbound lane. At least one, two-lane local road is also present through the entire corridor, running approximately parallel to I-70. The eastbound and westbound lanes of I-70 are separated by a narrow median with guardrail or concrete barrier. The speed limit is posted at 65 miles per hour ( mph ) entering the west end of project corridor, but is reduced to 60 mph at MP 238, and further reduced to 55 mph at MP 242. The corridor's Annual Average Daily Traffic (AADT) ranges from 39,000 to 45,000 vehicles per day.

Commercial vehicles account for approximately $10.5 \%$ of the AADT (CDOT 2011) through this segment of the corridor. During the peak period of travel the percentage is lower, but the commercial vehicles on this corridor have few other east-west options and can still have a significant effect on traffic operations due to the roadway geometry.

Figure 1. Project Area/Vicinity Map


In order to provide more eastbound capacity for peak conditions, the Colorado Department of Transportation (CDOT) is investigating ways to improve operations on an interim basis without a significant construction project. The I-70 Eastbound Peak Period Shoulder Lane (PPSL) project would utilize the shoulder to provide a third eastbound travel lane during peak periods from US 40 at Empire Junction to east Idaho Springs. During peak periods when the shoulder lane is being utilized, it would operate as a tolled express lane (Managed Lane or ML). The PPSL would serve as an extension of the third eastbound lane that was recently opened to traffic. This construction project widened I-70 eastbound only and extended from the East Idaho Springs interchange (Exit 241) to the US 6 interchange (Exit 244) at the base of Floyd Hill. Initiating the PPSL at Empire Junction recognizes the fact that US 40 adds a significant amount of traffic to I70 during peak eastbound periods.

The PPSL project is being developed according to the guidelines of the I-70 Mountain Corridor Context Sensitive Solutions (CSS) process. A Technical Team was formed that consists of representative from CDOT, other state and federal agencies, local governments, specific interest groups, and other stakeholders. A series of Technical Team meetings have been conducted on a monthly (or more frequent) basis to collaboratively develop the PPSL design concept with input from all stakeholders.

### 2.0 CURRENT SAFETY CONDITIONS

A thorough analysis of safety in the PPSL corridor was completed for this project (Safety Assessment Report - State Highway 70A - MP 230.00 to MP 242.00 - Region 1, October 25, 2013) and is included in this report as Appendix A. This report found that there were 780 crashes reported within the study segment between January 1, 2008 and December 31, 2012. The most predominant crash types were fixed object type crashes (concrete barrier, guard rail, embankment and walls), rear end type crashes, and sideswipe same direction type crashes. These crash types comprise approximately 82 percent of the crashes along the corridor. In general, there are several factors that contribute to the cause of crashes along the study corridor. Some of the primary factors include; the horizontal curvature of I-70, travel speed, traffic congestion due to weekend traffic, direction of travel and inclement weather / road conditions. For many of the crashes, there was more than one of these factors that contributed.

In general, the Safety Assessment Report (Reference 1) found that the fixed object crashes typically occurred on a winter weekday when higher travel speeds and / or poor road conditions were common factors. These barrier type crashes occurred more frequently in the westbound direction.

Rear end type and sideswipe same direction type crashes typically occurred on winter weekends when traffic congestion is more likely. These rear end and sideswipe type crashes occurred more frequently in the eastbound direction because this direction experiences higher traffic congestion. In fact, almost 50 percent of the eastbound rear end crashes occur on Sundays. In addition, there were several locations that the horizontal curvature of the roadway made rear end accidents more frequent due to the inability for vehicles to see stopped traffic ahead.

There were four specific curves in the eastbound direction where specific patterns of crashes were identified, involving both rear end and fixed object crashes: included:

- Curve 1 (at Empire Junction - MP 231.70 to MP 232.20) - During the study period, there were a total of 56 crashes on this curve, 37 eastbound and 19 westbound. The predominant crash type on this curve was rear end type crashes (30 of 56) which comprised 54 percent of the total. Of the rear end crashes 28 were eastbound and 2 were westbound. As was the trend for the entire segment, most of these rear end type crashes occurred in dry/daylight conditions during the afternoon peak hours when there was significant congestion.
- Curve 5 (just west of Fall River interchange - MP 237.25 to MP 237.55) - During the study period, there were a total of 27 crashes on this curve, 19 eastbound and 8 westbound. The predominant crash type on this curve was fixed object (guard rail, embankment) type crashes (13 of 27) which comprised 48 percent of the total. Of the fixed object crashes 9 were eastbound and 4 were westbound. These crashes generally occurred during the winter in inclement road conditions.
- Curve 6 (east of SH 103 interchange near Soda Creek Road overpass - MP 239.90 to MP 240.25) - During the study period, there were a total of 44 crashes on this curve, 26 eastbound and 18 westbound. The predominant crash type on this curve was fixed object (guard rail, barrier, embankment, etc.) type crashes (25 of 44) which comprised 57 percent of the total. Of the fixed object crashes, 14 were eastbound and 11 were westbound. These crashes generally occurred during the winter in inclement road conditions.
- Curve 7 (long curve and grade west of East Idaho Springs interchange - MP 240.43 to MP 241.15) - During the study period, there were a total of 46 crashes on this curve, 35 eastbound and 11 westbound. The predominant crash type on this curve was rear end type crashes ( 24 of 46 ) which comprised 53 percent of the total. Of the rear end crashes 18 were eastbound and 6 were westbound. As was the trend for the entire segment, most of these rear end type crashes occurred in dry/daylight conditions. The eastbound crashes primarily occurred during the eastbound peak hours of travel around 3:00 in the afternoon, while most of the westbound crashes occurred in the morning during the westbound peak hour of travel. It should be noted that Curve 7 has a large downhill grade in the eastbound direction.


### 3.0 OVERVIEW OF PPSL CONCEPT

The I-70 Eastbound Peak Period Shoulder Lane project ("Project") will utilize the shoulder to provide a third eastbound travel lane during peak periods along the I-70 Mountain Corridor from US 40 at Empire Junction to east Idaho Springs. The PPSL will serve as an extension to the third eastbound lane that has been constructed through the Twin Tunnels. It will operate as a tolled express lane (Managed Lane) during peak Sundays (and holidays) and will function as a safety shoulder for emergency stopping during off-peak periods. Several combinations of unmanaged lanes (also known as General Purpose (GP) lanes) and Managed Lane (ML) were considered. Intelligent Transportation System (ITS) devices will be installed or upgraded to support the operation of the PPSL. Long range improvements along the entire corridor are not yet funded, so the intent of this project is to provide an interim operational improvement to help ease traffic congestion along the l-70 Mountain Corridor. This chapter provides a summary of the information contained in the Concept of Operations report for this study (Reference 2).

The proposed PPSL along I-70 will provide reliable travel times during peak travel periods (generally 11:00 am to 8:00 pm) for motorists returning to the Denver Metro Area from recreational activities in the mountains of Central Colorado. The PPSL toll rate structure will be designed to carry traffic all the way to US 6, east of the Twin Tunnels.

CDOT will be responsible for the design and construction of the Project as well as maintenance and operation of the facility. The High Performance Transportation Enterprise (HPTE) will oversee the management and operation of the Managed Lane's tolling system. It is presumed that the E-470 Public Highway Authority (E-470) will serve as the Tolling System Integrator and will provide the back office system and customer service center to process and issue tolls, as well as collect payment.

### 3.1 Typical Section

A series of meetings were held with the project technical team to develop the requirements for the typical roadway cross-section, which will be used to ensure safe operations and a context sensitive solution that minimizes the amount of additional pavement required for widening. The existing I-70 roadway section through the project limits varies from approximately 37 feet to 40 feet. The proximity of Clear Creek to I-70 within the project limits suggests that a narrow typical cross-section will have the least environmental impacts. This approach also follows the interim nature of the project. In order to minimize negative impacts to safety along the corridor due to a narrow cross-section, the project technical team established the minimum lane and shoulder width requirements shown in Table 1.

Table 1. Minimum Lane and Shoulder Widths

| Element | Minimum Width | Source |
| :---: | :---: | :---: |
| Left Shoulder (inside) | 1 ft | Safety Analysis |
| All Travel Lanes | 11 ft | FHWA Requirement, <br> Safety Analysis |
| Primary Commercial Vehicle Lane | 12 ft | CMCA, <br> Safety Analysis |
| Right Shoulder (outside | 4 ft | FHWA Requirement |

The most common type of separation treatment for managed lanes in Colorado is to create a buffer area with pavement markings, as opposed to a physical barrier. The width of the buffer area can vary depending on the available pavement and ROW. In keeping with the goals of an interim solution and due to the geometric constraints within the project limits, the recommended separation treatment between the PPSL and the GP lanes is only the width of the pavement markings.

Based on these requirements, the minimum typical cross-section recommended by the project team is depicted in Figure 2. This 39 -foot cross-section will be applied as a general template for the project corridor. However, a wider cross-section may be used as right-of-way and existing pavement allow, and exceptions may need to be evaluated for short stretches with tighter geometry.

Figure 2. Minimum Recommended Typical Cross-Section


With the typical cross-section established, a determination was made as to which lane would be managed (tolled) during peak periods and which lane would serve as the full shoulder (breakdown area) during the off-peak periods.

The project technical team evaluated the operation of a left-side versus right-side PPSL, and developed Table 2 to show the pros and cons of each alternative. General driver expectancy would suggest that the right-side PPSL would provide a more standard break-down area during the off-peak conditions, but this option would create several operational concerns that the project team had to consider. With a right-side PPSL, the traffic in the GP lanes would have to shift one lane to the right during peak periods in order to operate the left-side toll lane, requiring extra signing and additional merging conflict points. The freeway ramps would also tie into the travel lanes at a different point during the peak and off-peak periods, creating potentially unsafe conditions. In order to allow slower moving commercial vehicles to operate in a full 12-foot lane
and to stay to the right during both peak and off-peak periods with a right-side PPSL, the minimum cross-section (Figure 2) would have to be widened by one foot (to 40 feet) to accommodate the second 12 -foot lane.

Through the evaluation of these operational concerns (such as driver expectancy and the higher anticipated speeds during PPSL operations), lessons learned from other states, meetings with the emergency responders within the project limits, and the commercial vehicle operations representatives, it was determined that the left-side PPSL was the preferred alternative.
Figure 3 depicts the typical cross-section and lane assignments for the preferred alternative during peak and off-peak conditions.

Table 2 Left-Side vs. Right-Side PPSL

|  | Pros |  | Cons |
| :--- | :--- | :--- | :--- |

Source: I-70 Eastbound Peak Period Shoulder Lane Left vs. Right Side Operations, HDR White Paper
Figure 3. Typical Cross-Section with Lane Assignments


### 3.2 Access and Egress Provisions

Motorists will be able to operate in the PPSL continuously from beginning to end; however, potential intermediate access zones to accommodate ingress and/or egress movements were also considered. Access is a key design component of any type of managed lane, helping to safely and efficiently guide users in and out of the facility at desired locations. Access zones are designed at logical points based upon trip origins and destinations, and the primary purpose of the lane. The frequency of access zones takes into account the travel demands of the area, pricing strategy for tolled lanes, length of tolling area, safety, and other factors.

In order to maintain free flow operations and minimize weaving/merging movements with the anticipated speed differential (see Section 5.3), no intermediate ingress-only access zone are recommended between US 40 and the east side of Idaho Springs. However, an ingress-only access zone will be required between the east Idaho Springs interchange (Exit 241) and the Twin Tunnels, allowing entrance into the full-time managed lane that will continue to operate from the Twin Tunnels to US 6 when the PPSL is not in operation.

### 3.3 Emergency Pull-outs

Emergency pull-outs are essential to the reliable operation of any roadway segment that has been converted to dynamic shoulder use (DSU), particularly in rural areas with a lower density of interchanges. Based on European experience, the recommended spacing for emergency pull-outs (or interchanges) in this segment of I-70 is every $1 / 2$ to $3 / 4$ mile. Table 3 shows the locations of proposed emergency pullouts specifically built for the PPSL project and off-ramps that also serve to move disabled vehicles out of the stream of traffic. There are 9 locations through the approximately nine miles where PPSL operations will limit shoulder use for emergencies. This is an average of 1.0 mile between pull-out with a minimum separation of 0.7 miles and a maximum of 1.8 miles.

Table 3. Proposed Emergency Pull-out Summary with Ramp Locations

| No | MP | Location | Length | Width | Miles <br> Between |
| :---: | :---: | :--- | :---: | :---: | :---: |
| Ramp | 231.9 | Empire Ramp (E-14-S) | 380 | 12 | - |
| Ramp | 233.0 | Lawson Ramp (E-14-AM) | 980 | 12 | 1.1 |
| Ramp | 234.2 | Downieville Ramp (E-14-AK) | 1650 | 12 | 1.2 |
| 3 | 235.0 | Dumont | 510 | 16 | 0.8 |
| 5 | 236.8 | West of Fall River Rd | 510 | 16 | 1.8 |
| Ramp | 237.7 | Fall River Ramp (E-14-AZ) | 600 | 12 | 0.9 |
| Ramp | 238.9 | West Idaho Springs Ramp (F-14-H) | 670 | 12 | 1.2 |
| Ramp | 239.6 | SH 103 Ramp (F-14-E/F-14-AA) | 800 | 12 | 0.7 |
| Ramp | 241.1 | East Idaho Springs Ramp (F-14-Y) | 310 | 12 | 1.5 |

### 3.4 Speed Limits

During peak period operations, the target speed for the PPSL will be at least 45 mph to optimize traffic flow and provide a reliable travel option through pricing. The GP lanes will likely be operating at a lower speed due to traffic congestion. Reducing the speed differential between the fastest moving traffic and the slowest moving traffic is generally found to increase safety by reducing the number of lane changes and the average crash severity. There are two main methods CDOT can actively employ to manage the speed differential between the two lane groups: toll rates and variable speed limits.

- Toll rates can be set to achieve desired volumes in managed lanes, which in turn affects the speeds in that lane since speeds are related to the volume of traffic.
- Variable speed limits could also be used to change the posted regulatory speed limit along the corridor. Through a separate study (Reference 3), CDOT has previously investigated the potential benefits of dynamically controlling speed limits along this segment of the I-70 corridor based on traffic conditions. It is assumed that the same speed limit will be posted for all lanes and will be varied manually (not automatically).

Beyond these active methods for controlling speeds, the fact that the adjacent GP lanes will be congested and moving slowly may naturally lower the speeds in the toll lane due to driver discomfort.

### 3.5 Roadway Striping

The PPSL will need to be separated from the general purpose lanes, which will be accomplished using pavement markings. The roadway striping will identify the appropriate locations where drivers can enter or exit the PPSL and should convey that the PPSL is a shoulder during non-peak periods. An 8-inch solid white line will be used to delineate the PPSL from the GP lanes. It is recommended that a rumble strip will be placed along this separator line.

### 3.6 Roadway Signing

The signing associated with the PPSL will be a critical component of the traffic control and operations of the lane. Signing will need to clearly convey that the shoulder is only open to traffic during limited time periods, but is available for breakdowns or emergencies during the offpeak periods. Since this is an interim operational improvement, the focus of the signing will be to provide clear and concise messaging with a minimal number of signs. The following section provides an overview of the information that should be conveyed to drivers during both peak and off-peak periods, and conceptual signing layouts.

Since the PPSL will be tolled, signage will be necessary to provide toll rate information and the location of the access zones with enough advance warning to allow drivers to easily enter and exit the PPSL. Clear and consistent signing and striping will reduce confusion for drivers and minimize lane separation violations in which drivers enter or exit the PPSL at locations outside of the designated access zones.

### 4.0 SAFETY FINDINGS FOR SIMILAR INSTALLATIONS

There are a number of implementations where safety shoulders are used as travel lanes to increase the efficient utilization of highway capacity (see Reference 4). In the United States, the primary use of shoulders has been as a safety refuge area. The limited shoulder use as a travel lane has been primarily reserved for special users of the roadway system, most often transit vehicles. Agencies have seen bus use of shoulders as a low-cost and quick strategy to improve bus operations and reliability without having to acquire additional right-of-way and invest additional large sums of money into the infrastructure. Several states have deployed temporary shoulder use for all vehicles on congested corridors with success. While the number of deployments is limited, overall experience utilizing shoulders for interim use (known as dynamic shoulder use or DSU) has been positive in the United States.

However, research regarding documented safety benefits has been inconclusive (see Reference 5). Factors that make it difficult to identify DSU safety impacts include (see Reference 6):

- The small number of available sites with the treatment, along with potential complexities added due to unique geometric designs present or unique operational protocols used at each site.
- The limited number of years the treatment has typically been in use.
- The expected magnitude of the safety effects, which may be small. Smaller safety effects require a larger sample size to determine significance.
- The limited number of crashes, especially crashes that are associated with the specific treatment.

In Europe, part-time shoulder use is a congestion management strategy typically deployed in conjunction with complementary traffic management strategies - such as variable speed limits (speed harmonization) and/or ramp metering. European implementers include The Netherlands, Germany, and Great Britain. The use of exterior shoulder lanes during peak travel periods has been utilized extensive in Germany and England since the 1990s. Part-time shoulder use is only utilized during congested periods when queues begin to build at bottlenecks in the system. Moreover, this treatment is almost always deployed in conjunction with speed harmonization. The intent is to reduce the speeds along the corridor and smooth out driver performance and reduce the likelihood of collisions. European agencies have realized both safety and mobility benefits as a result of these projects. When travel speeds decline due to congestion, dynamic signs over or next to the shoulder indicate that travel on the shoulder is permitted. These signs and the overhead lane messages are blank when travel on the shoulder is not permitted.

In both England and the Netherlands, it was noted that the need for the outside shoulder to serve as a disabled vehicle area has diminished because of improvements in vehicle mechanical reliability. Therefore, the risk level for not providing full shoulder widths have diminished since fundamental freeway design criteria were first established (Reference 5). Research by Highways Agency in England indicated that the risk of eliminating shoulders (at least for part-time use) is minimal.

### 4.1 Deployments in the United States

I-35W - Minneapolis, Minnesota - A segment of the left shoulder on I-35W has been converted from bus only to a priced dynamic shoulder lane open to all vehicles (Reference 4). Opened in 2009, the objective of the project is to improve traffic flow using transit and tolling. The shoulder treatment was also deployed with variable speed limits on the general purpose lanes. All lanes are 12 feet wide with three-foot shoulders. Overhead gantries are spaced every 1.2 mile and include static signs and dynamic message sign inserts indicating price and lane use. The Minnesota State Patrol enforces the facility through visual inspection. Emergency refuges were installed along the right shoulder to facilitate emergency use.

Although safety statistics are not available, $\mathrm{Mn} / \mathrm{DOT}$ personnel believe the facility is operating safely and as planned. Early results from variable speed limits in Minnesota shows increased mobility, throughput, and safety resulting from improvement in the speed differentials approaching congestion and reduced shockwaves.

I-66 - Northern Virginia - The segment of I-66 between US 50 and I-495 has been converted to include separate HOV lane and shoulder lane (Reference 4). The right shoulder is open to peak-period, peak-direction general purpose traffic which allows the leftmost lane to operate as an HOV lane. The general purpose lanes are 12 feet wide, the inside shoulder is 8 to 12 feet wide, and the outside shoulder (peak lane) is 11 feet wide. Signs over the outside shoulder enable a downward pointing green arrow when the shoulder lane is active, and a red X appears when the shoulder reverts to its normal use.

With regard to safety, researchers made the following observations (see Reference 6):

- All lanes together - models found no evidence that the following factors affect crash frequency when aggregated across all lanes: managed-lane strategy during peak hours, AADT volumes, merging and diverging influence areas, weather, light conditions, and existence of pull-off areas.
- General purpose lanes only - the variable AADT volumes appear to be significant and show about a two percent increase in weekday crashes for each increase of 1,000 vehicles per day in the AADT range of 50,000 to 83,000 vpd.
- Right shoulder specific - motorist behaviors at the merge and diverge areas during adverse sunlight conditions are significant and show an increase of about 38 percent in crashes.

California - The safety effects of narrow lanes and shoulder use lanes was investigated using 490 sites in California where the freeway was converted from four to five lanes or five to six lanes (see Reference 6). The evaluation found that projects converting four lanes to five lanes resulted in increases of 10 to 11 percent in crash frequency, which was found to be statistically significant. The observed increases in crash frequency could not necessarily be attributed to the use of a narrower lane or the conversion of a shoulder to a travel lane. The use of the added lanes as HOV lanes, which may have introduced a difference in speed between adjacent lanes, may be another explanation for the increase in crashes. The analysis results also suggest that the conversion projects may decrease crash frequencies upstream of the project an increase crash frequencies within and downstream of the project because the project may result in the relocation of a traffic operational bottleneck.

### 4.2 Deployments in Europe

The Netherlands - Temporary Shoulder Use and Speed Harmonization - As implemented in The Netherlands, temporary right shoulder use (also known as hard shoulder running) involves a gantry with lane control signals indicating when the shoulder is available for use (Reference 4). Hard shoulder running is only deployed in conjunction with speed harmonization. This strategy works to reduce speeds in congested conditions, thereby improving traffic flows and reducing the likelihood of traffic incidents. With hard shoulder running used on six freeways, the Dutch have seen reductions in incidents between 10 percent and 48 percent.

Germany - Temporary Shoulder Use and Speed Harmonization - Temporary shoulder use in Germany, also known as hard shoulder use, is only deployed in conjunction with speed harmonization to address capacity bottlenecks on the freeway network (Reference 4). The use of the right shoulder during peak travel periods has been utilized since the 1990s with nearly 125 miles currently in operation. Digital signs over each lane indicate lane use and reduced speed limits. The safety benefits realized through temporary shoulder use and speed harmonization are significant. Facilities with temporary shoulder use have seen a reduction of up to 29 percent in crashes with injuries, a reduction of up to 27 percent in crashes with heavy material damage, and a reduction of up to 3 percent in crashes with light material damage.

Great Britain - Managed Motorways - Introduced in 2001 by the UK's Highways Agency, its experience with deployment of over 30 miles of managed motorways has been very positive improved flow, reduced accidents, fewer emissions - all at a fraction of the cost and environmental impact of traditional widening. In fact, the performance of managed motorways has exceeded expectations, notably in terms of safety (Reference 7). The project combines the strategies of speed harmonization (variable speed limits) and temporary shoulder use (Reference 4).
As an example, the M42 managed motorway has numerous technological components that ensure its successful operation (Reference 8). These include:

- Lightweight Gantries - hold lane control signals and dynamic message signs that indicate reduced speed limits and the availability of the hard shoulder for travel use rather than for emergency refuge only.
- Highways Agency Digital Enforcement Camera System (HADECS) - are purpose built enforcement cameras that enforce the mandatory speed limits.
- Emergency Refuge Areas (ERAs) - Safe areas away from the traffic for use in the event of a breakdown or emergency are spaced three-tenths of a mile apart. They are wider than the hard shoulder to provide additional safety and are connected to the Highways Agency (HA) regional control center by both CCTV cameras and emergency roadside telephones so that vehicles can be detected when they enter the ERA.
- Emergency Call Boxes - are situated in every emergency refuge area and offering a direct link to the HA regional control center.
- Sensors - are buried in the road surface to measure the general speed and flow of traffic. The sensors are used, via a computer system called MIDAS (Motorway Incident Detection and Automatic Signaling), to automatically set the most appropriate speed limit for current traffic conditions.

The primary goal for improving transportation across the UK is related to safety - which is an acknowledge contributor to roadway congestion. During the first 36 months of operations (Reference 9), MM 42 experienced a reduction in personal injury accidents (PIA) from 5.08 to 2.25 per month (a 55 percent reduction), and a notable reduction in the "accident severity index" (ratio of fatal and serious accidents to all accidents) from 0.16 to 0.07 ( 54 percent reduction). Furthermore, there has been a notable reduction in the number of people being fatally or seriously injured suggesting that when accidents do happen, vehicle occupants are more likely to be slightly injured than fatally or seriously injured.

### 5.0 SAFETY CONCERNS WITH PPSL

When comparing the proposed I-70 PPSL project with others in the United States and Europe, the following difference should be kept in mind:

- The I-70 PPSL will only be deployed on weekends (primarily Sundays) and holiday peak periods (generally 11:00 am to $8: 00 \mathrm{pm}$ ) when there is congestion (primarily summer and winter). The PPSL will revert to its normal purpose as a safety shoulder at all other times. Other DSU implementations generally address weekday peak period (morning and evening) congestion concerns. Thus, they can be implemented 10 times a week, and everyday commuters become very familiar with their operation and requirements.
- When the shoulder is used as a travel lane, it will be tolled (Managed Lane). An installation on I-35W in Minneapolis, Minnesota is also tolled (Priced Dynamic Shoulder Lane PDSL). However, other lanes in the United States and Europe are free and open to all vehicles or certain classes of vehicles (such has high occupancy vehicles - HOV). When the hard shoulder is free and open to all vehicles, there is more potential for vehicles to weave in and out of the shoulder lane which helps to reduce speed differentials between lanes, but increases the likelihood of crashes due to these maneuvers.
- The safety shoulder (during off-peak periods) for the PPSL project will be on the left side of the freeway. The normal location for the safety shoulder is on the outside/right (left for England).
- The PPSL will transition to the permanent third lane that has been constructed beginning at the East Idaho Springs interchange (Exit 241). This means that there will be no downstream bottleneck that might lead to crashes migrating from one section of the corridor to another.

When comparing the I-70 PPSL project to the physical and operational characteristics of European implementations, several differences that could affect safety are apparent:

- Due to the high volumes and limited space for enforcement activities, the I-70 PPSL will only have limited speed limit enforcement activities. This is similar to I-35W in Minneapolis where variable speed limits are considered advisory only. In the UK, the Highways Agency Digital Enforcement Camera System (HADECS) is utilized on Managed Motorways. This automated system uses purpose-built enforcement cameras to enforce mandatory speed limits.
- The PPSL corridor will have complete coverage by closed circuit television cameras (CCTV). This will allow personnel at the designated control center to monitor traffic flow when the managed lane is operational. In the future, CDOT may be implementing a system of traffic sensors that provide real-time data to control personnel. Managed Motorways in Great Britain utilized a computer system called MIDAS (Motorway Incident Detection and Automatic Signaling) to automatically set the most appropriate speed limit for current traffic conditions. This system relies on sensors buried in the road surface that measure the general speed and flow of traffic (Reference 8).
- The I-70 PPSL will rely on signs along the edge of the roadway and dynamic signs on the left side of the Managed Lane or shoulder at other times. It will not utilize gantries that span all lanes and have specific dynamic message signs over each lane to inform motorists of the speed limits and whether the lane is open to traffic, i.e., the lane may be closed ahead due to an incident.

Safety was analyzed based on the geometric features and changes in the level of congestion that are inherent to the PPSL concept. The following two section show how calculations of the safety improvement due to reduced congestion could more than offset the safety implications resulting from changes to the number of lanes, their widths, and the shoulders (while utilizing the existing pavement section, for the most part). Overall, the calculations result in a small forecasted improvement in safety.

### 5.1 Safety Analysis of Geometric Changes

As shown in Figure 3, the 39 feet of available pavement will be utilized differently on Sundays than the rest of the week. The Highway Safety Manual (HSM - Reference 10) includes Chapter 13 that is devoted to Crash Modification Factors (CMF). CMFs quantify the change in expected average crash frequency (crash effect) at a site caused by implementing a particular treatment, design modification, or change in operations. CMFs are used to estimate the potential changes in expected crash frequency or crash severity plus or minus a standard error due to implementing a particular action. The resulting CMFs are often specific to the type of facility involved. Although not every type of change on every type of facility is covered, there is a broad range of statistics that were found to be suitable for analyzing the PPSL project.

Table 4 provides a summary of the CMFs that were utilized for the PPSL analysis. It should be pointed out that a CMF of 1.0 means that there is likely to be no change in the crash experience due to a change. A CMF greater than 1.0 indicates that more crash may be expected.
Conversely, a CMF less than 1.0 means that that an improvement in safety might be realized. For example, decreasing the width of a travel lane from 12 feet to 11 feet could likely result in a decrease in safety. For example, Table 13-4 of the HSM shows that narrowing a travel lane from 12 feet to 11 feet results in a CMF of 1.03 - approximately 3 percent more total crashes may result from this change.

Table 4. Crash Modification Factors (CMF)

| Geometric Change | HSM Table | CMF |
| :--- | :---: | :---: |
| Decreasing lane width from 12' to 11' | $13-4$ | 1.03 |
| Increasing shoulder width from 4' to 8' (no further improvement is <br> noted when the shoulder is widened to 12') | $13-8$ | 0.92 |
| Decreasing the shoulder width from 8' to 4' (no decrease is <br> experience between 10' and 8') | $13-8$ | 1.09 |
| Decreasing the shoulder width from 4' to 1' | $13-8$ | 1.06 |
| Removing an edge of lane rumble strip | $13-45$ | 1.10 |

Four separate calculations were made using individual crash modification factors (see Appendix B to review the detailed calculations):

- Off-Peak (Monday through Saturday) Total Crash calculations based on changes to lane and shoulder width - The increase in the width of the left shoulder offsets the decrease in the width of the right shoulder. The narrowing of the left through lane means that the overall CMF is 1.03 for this element of the analysis. Over the 5 -year crash analysis period, there was an average of 54 crashes each year in the eastbound direction ( 272 crashes in 5 years). The average annual increase would be 1.6 eastbound crashes.
- Peak (Sunday) Total Crash calculations based on changes to lane and shoulder width - On Sundays, there will be two 11 -foot lanes and the shoulders on each side will be substandard. These narrow geometric elements result in an overall CMF of 1.23 for Sundays. Over the 5 -year crash analysis period there was an average of 26 crashes each year in the eastbound direction ( 128 crashes in 5 years). The average annual increase would be 5.8 eastbound crashes.
- Off-Peak (Monday through Saturday) Single Vehicle Run of the Road (SVROR) calculations based on changes to rumble strips - During off-peak periods (Monday through Saturday), there would be rumble strips on the left side of the inside lane and on the right side of the outside. Thus, there would be no change expected to the experience for SVROR crashes during off-peak periods.
- Peak (Sunday) Single Vehicle Run of the Road (SVROR) calculations based on changes to rumble strips - During peak periods on Sunday, there would be rumble strips on each side of the general purpose lanes (the same as during off-peak periods). However, there would not be a rumble strip on the left side of the Managed Lane. See Appendix B for the detailed calculation of increased crash potential, but the result is an increase of 0.2 crashes per year.
- Total Crashes related to geometric changes - The total result of the CMF analyses is an expected increase of 7.6 crashes per year ( 37 crashes in 5 years).


### 5.2 Safety Analysis due to Congestion Reduction

A recent research paper prepared by CDOT staff members examined the relationship of traffic flow parameters (such as volume, density, and speed) to safety (Reference 11). This research found that as flow increases, the crash rate initially remains constant until a certain critical threshold combination of speed and density is reached. Once this threshold is exceeded, the crash rate rises rapidly (see Figure 4). This rapid rise in crash rate is likely caused by an increase in density without a notable reduction in speed and the resultant smaller headways that make it difficult or impossible for drivers to compensate for error. When one considers that perception-reaction time and vehicle characteristics remain unchanged (even though considerably more vehicles are in the same space traveling at substantially the same speed as before), an increased probability of crash occurrence is highly plausible. The analysis suggests that during hard shoulder running, crash rates decline because of the lower traffic volume or density per lane and that the safety benefits of a reduced volume or density per lane outweigh the adverse effects resulting from the lack of provision of a full shoulder.

Figure 4. Corridor Specific SPF for I-70, Weekend in Winter (Eastbound Flow)


One of the roadway segments that were analyzed for Reference 11 was the I-70 Mountain Corridor in the eastbound direction on a Sunday in winter (see Figure 4). This figure shows the relationship between hourly volumes and the resulting crash rate. An analysis was conducted based on a comparison of existing hourly traffic volumes and of the hourly volumes that would use either the two general purpose lanes or the Managed Lane on Sunday afternoons (see Appendix C). The PPSL project hourly volume forecasts were obtained from the DynusT model that was developed during the PPSL Feasibility Study (Reference 12). Figure 5 illustrates the difference in volumes per lane that would occur during the 3:00 pm hour on Sunday afternoon and the resulting differences in the crash rate. Appendix C provides the hourly comparison of crash rates for the existing and PPSL scenarios.

The result is a forecasted decrease of approximately 53 percent in the eastbound total crashes on Sundays from implementation of the PPSL project. According to the Safety Assessment (see Reference 1), the total annual crashes on Sundays in the eastbound direction is approximately 26 (128 over five years) and the annual number of rear-end crashes is approximately 19 (94 over five years). The calculation reveals that annual decrease in crashes due to congestion reduction would be between 9.4 ( 47 over 5 years) and approximately 12.8 ( 64 over 5 years).

Figure 5. PPSL Corridor Volumes Superimposed on I-70 SPF


Thus, when the forecasted decrease in crashes due to congestion relief is compared to the increase related to geometric changes, the analysis show an annual decrease of between 1.8 ( 9 over 5 years) and 5.2 crashes ( 26 over 5 years).

Safety was analyzed based on the geometric features and changes in the level of congestion that are inherent to the PPSL concept. The calculations show that the safety improvement due to reduced congestion could more than offset the safety implications resulting from changes to the number of lanes, their widths, and the shoulders (while utilizing the existing pavement section, for the most part). Overall, the calculations result in a small forecasted improvement in safety.

### 5.3 General Observations concerning PPSL Elements

As covered in the previous sections, there are a number of decisions about how the various elements of the PPSL will be configured. Each one has the potential to impact safety positively or negatively. The following discussion provides a qualitative assessment concerning these potential impacts to safety and how measures will be included in the design for the PPSL that minimize potential adverse impacts to safety.

- Merge and Diverge Areas - To the greatest extent possible, the geometry of on-ramps and off-ramps is being preserved. No deceleration or acceleration lengths are being decreased and will be lengthened where possible to meet current design standards. Since the PPSL is on the left side, there will be no changes to how these ramps operate between
peak and off-peak conditions. Thus, the safety characteristics of these should remain the same as currently, with some possibility for minor improvement.
- Intermediate Access and Egress Points - Based on project team discussions about the safety implications of the speed differential that will be created during peak periods on eastbound I-70 between the Managed Lane and the adjacent general purpose lane, published research on this topic were reviewed and a summary memorandum prepared (see Appendix D). Based on this research, recommendations regarding access and egress points along the PPSL are as follows:
- The number of access points should be limited, and only an entrance downstream of the US 40 on-ramp (Exit 231 - Empire Junction) provided. A secondary access to the Managed Lane will be located east of the East Idaho Springs interchange (Exit 241), allowing entrance into the full-time Managed Lane that will continue to operate form the Twin Tunnels to US 6 when the PPSL is not in operation.
- The number of exit points should likewise be limited, and only the exit (closure point) before the US 6 interchange (Exit 244 - Kermitt's) provided.
- Variable Speed Limit (VSL) Signs - Because enforcement of the variable speed limits will be limited (no camera detection systems such as those used in the United Kingdom), VSL signs are an important safety consideration and should be utilized through the PPSL/ML corridor (see Appendix D). They will serve to moderate speed differentials and harmonize traffic between the managed lane and general purpose lanes. Toll rates can be changed as traffic demand warrants so that the volume in the ML is less than the adjacent GP lane and thus the speed will be higher. A volume in the ML that is higher than normally encountered with HOV lanes will minimize the number of large gaps in the traffic stream and thus reduce the temptation to switch lanes at intermediate points. Based on on-going experience once the PPSL is operational, a differential of 15 to 20 mph should not present undue safety concerns, especially with minimal lane changing.
- Emergency Pull-outs and Interchanges - The number of emergency pull-outs and offramp locations should minimize disturbances to peak traffic operations due to breakdowns. The average spacing is 1.0 miles. The maximum separation ( 1.8 miles) will be encountered east of the Dumont interchange (Exit 235) where I-70 has long tangent sections and relatively gentle curves, allowing good sight-distance of the traffic stream ahead. Both England and the Netherlands have noted that the need for refuges (either the outside shoulders or pull-outs) to serve as disabled vehicle areas has diminished because of improvements in vehicle mechanical reliability. Research by Highways Agency in England indicated that the risk of eliminating shoulders (at least for part-time use) is minimal. In fact, new standards for full-time shoulder use in the United Kingdom recognize that original guidance may have been too conservative and allow up to 1.5 miles between emergency pull-outs (see Reference 13). Therefore, the risk level for not providing full shoulder widths have diminished since fundamental freeway design criteria were first established (Reference 5)
- Monitoring of Operations by CDOT Staff - The PPSL corridor will have complete coverage by closed circuit television cameras (CCTV). This will allow personnel at the designated control center to monitor traffic flow when the managed lane is operational. If there are incidents in the PPSL area, operators will be able to see and determine the nature of the problems and coordinate the appropriate emergency response. In addition,

Courtesy Patrol equipment should be prepositioned in the corridor during PPSL operations to respond to minor emergencies and tow disabled vehicles out to the traffic stream as quickly as possible. In the future, CDOT may be implementing a system of traffic sensors that provide real-time data to control personnel.

- Signs - The signing associated with the PPSL will be a critical component of the traffic control and operations of the lane. Signing will need to clearly convey that the shoulder is only open to traffic during limited time periods, but is available for breakdowns or emergencies during the off-peak periods. The electronic, variable elements of the signs (partial or whole) can be used to provide specific messages tailored to specific and/or unusual situations.
- Opening and Closing Procedures - The ML should only be opened after it has been determined that the shoulder lane is clear of stationary vehicle, debris, standing water, and or snow. Normally, DSIs are opened in reverse section order to reduce the risk of a vehicle stopping in the shoulder lane in the time between the shoulder lane check being completed and the section being opened. The proposed operation of the PPSL with only one entrance location will mean that operators will need to closely monitor the CCTVs throughout this critical transition period. Closure of the ML at the end of the peak period should be straightforward and proceed from the west end to the east. If the lane must be closed during the peak period for an emergency situation, VMS signs along the corridor can be changed simultaneously to information motorists of the new status of operations.
- Emergency Response - The project team has closely coordinated with emergency service providers in Clear Creek County, and a summary of emergency response procedures has been prepared.
Overall, the conclusion is that the proposed PPSL project will not result in a decrease in safety. However, there should be comprehensive monitoring of both peak and off-peak operations after the PPSL is implemented. Traffic operations and safety should be reviewed frequently, not just in the PPSL corridor but from the Eisenhower Johnson Memorial Tunnel (EJMT) to the Clear Creek County / Jefferson County boundary.

The following data is normally collected by CDOT in the normal course of operations and should be very valuable:

- Crash records - should be reviewed by day of the week, season, lane, etc.
- Automatic Traffic Recorders (ATR) - are maintained by CDOT at the Twin Tunnels and EJMT, and they record volumes by vehicle classification for each lane.
- Speed and Travel Time Indicators - are placed throughout the I-70 Mountain Corridor.
- VISSIM and DynusT Computer Models - have been calibrated for the I-70 Mountain Corridor and can be used to analyze the impacts of changes that could potentially improve operations further.


### 6.0 SUMMARY AND RECOMMENDATIONS

The I-70 Eastbound Peak Period Shoulder Lane (PPSL) project would utilize the shoulder to provide a third eastbound travel lane during peak periods from US 40 at Empire Junction to east Idaho Springs. During peak periods when the shoulder lane is being utilized, it would operate as a tolled express lane (Managed Lane). The PPSL would serve as an extension of the third eastbound lane that was recently opened to traffic. This construction project widened I-70 eastbound only and extended from the East Idaho Springs interchange (Exit 241) to the US 6 interchange (Exit 244) at the base of Floyd Hill. Initiating the PPSL at Empire Junction recognizes the fact that US 40 adds a significant amount of traffic to I-70 during peak eastbound periods.

A thorough analysis of safety in the PPSL corridor was completed for this project. The most predominant crash types were found to be fixed object type crashes (concrete barrier, guard rail, embankment and walls), rear end type crashes, and sideswipe same direction type crashes. These crash types comprise approximately 82 percent of the crashes along the corridor. These rear end and sideswipe type crashes occurred more frequently in the eastbound direction because this direction experiences higher traffic congestion. In fact, almost 50 percent of the eastbound rear end crashes occur on Sundays.

To the greatest extent possible, the existing roadway cross section will be utilized without widening. The minimum typical cross-section recommended by the project team is 39 feet. From left to right, this will allow a 12-foot inside shoulder during off-peak periods (1-foot shoulder and 11 -foot ML during peak periods), 11 and 12 -foot general purpose lanes, and a 4 -foot outside shoulder. Based on a thorough and encompassing evaluation process, it was determined that the left-side PPSL was the preferred alternative.

### 6.1 Safety Findings for Similar Installations

While overall experience utilizing shoulders as additional travel lanes in the United States has been positive, research regarding documented safety benefits has been inconclusive. Factors that make it difficult to identify safety impacts include the small number of available sites with the treatment, the complexities due to unique geometries of each implementation, the limited number of years each treatment has been in use, the anticipated small magnitude of the safety effects, and the limited number of crashes associated with each specific treatment.

In Europe, part-time shoulder use is a congestion management strategy typically deployed in conjunction with complementary traffic management strategies such as speed harmonization and/or ramp metering. The intent is to reduce the speeds differentials along a corridor and reduce the likelihood of collisions. European agencies have realized both safety and mobility benefits as a result of these projects.

The following describes specific elements of implementations in both the United States and Europe.

I-35W (Minneapolis, Minnesota) - A segment of the left shoulder on I-35W has been converted to a priced dynamic shoulder lane open to all vehicles. Although safety statistics are not available, Mn/DOT personnel believe the facility is operating safely and as planned. Early results from variable speed limits in Minnesota show increased mobility, throughput, and safety
resulting from improvement in the speed differentials approaching congestion and reduced shockwaves.

I-66 (Northern Virginia) - The segment of I-66 between US 50 and I-495 has been converted to include an HOV lane and a shoulder lane. Models associated with the project found no evidence that the following factors affect crash frequency when aggregated across all lanes: managed-lane strategy during peak hours, AADT volumes, merging and diverging influence areas, weather, light conditions, and existence of pull-off areas.

California - The safety effects of narrow lanes and shoulder use lanes were investigated using 490 sites in California where the freeway was converted from four to five lanes or five to six lanes. The evaluation found that projects converting four lanes to five lanes resulted in crash frequency increases of 10 to 11 percent. However, the observed increase could also be a result of the speed differential introduced by added HOV lanes. Also, the analysis results suggest that despite increasing crash frequencies within the project limits, crash frequencies upstream of the project may be reduced.

The Netherlands - Hard shoulder running is only deployed in conjunction with speed harmonization in the Netherlands. With implementations on six freeways, the Dutch have seen a reduction in incidents between 10 and 48 percent.

Germany - Hard shoulder running is also only deployed in conjunction with speed harmonization in Germany. Facilities with hard shoulder running and speed harmonization have seen a reduction of up to 29 percent in crashes with injuries, a reduction of up to 27 percent in crashes with heavy material damage, and a reduction of up to 3 percent in crashes with light material damage.

MM 42 (Great Britain) - In Great Britain, MM 42 combines speed harmonization with hard shoulder running. During the first 36 months of operations there was a reduction in personal injury accidents from 5.08 to 2.25 per month ( 55 percent) and a reduction in the "accident severity index" (ratio of fatal and serious accidents to all accidents) from 0.16 to 0.07 (54 percent).

### 6.2 Safety Concerns with PPSL

When comparing the proposed I-70 PPSL with other projects in the United States and Europe, significant differences should be kept in mind. These include:

- Other implementations generally address weekday peak period congestion concerns and therefore have everyday commuters that become very familiar with their operation and requirements.
- When the shoulder is used as a travel lane, it will be tolled. When the hard shoulder is free and open to all vehicles, there is more potential for vehicles to weave in and out of the shoulder lane which helps to reduce speed differentials between lanes, but increases the likelihood of crashes due to these maneuvers.
- The safety shoulder (during off-peak periods) will be on the left side of the freeway, whereas the normal location in the United States is on the right side.
- The PPSL will transition to the permanent third lane that has been constructed beginning at the East Idaho Springs Interchange, which means there will be no downstream bottleneck that might lead to crashes migrating from one section of the corridor to another.
- Only limited speed limit enforcement will be possible due to the high volumes and limited space for enforcement activities.
- The project will not utilize gantries that span all lanes and have specific dynamic message signs over each lane to inform motorists of speed limits and whether the lane is open to traffic.

Safety Analysis of Geometric Changes - The Highway Safety Manual (HSM) discusses crash modification factors which quantify the change in expected average crash frequency at a site caused by implementing a particular treatment, design modification, or change in operations. Four separate calculations were made using individual crash modification factors to analyze the total number of crashes during both off-peak and peak periods, and the number of single vehicle run off the road crashes during both off-peak and peak periods. As a result of these calculations, it was found that there is the potential for an additional 7.6 crashes per year related to geometric changes associated with the project.

Safety Analysis due to Congestion Reduction - A recent research paper prepared by CDOT staff members suggests that during hard shoulder running crash rates decline because of the lower traffic volume or density per lane. The I-70 Mountain Corridor was analyzed in this paper and it was forecasted that a decrease in total crashes of approximately 53 percent on Sundays would be seen as a result of PPSL implementation; an annual decrease in crashes due to congestion reduction would be between 9.4 and approximately 12.8 .

When the forecasted crash reductions due to congestion relief are combined with the previously discussed increase related to geometric changes, the analysis shows an annual decrease of between 1.8 and 5.2 crashes. Therefore, the PPSL project should not result in a net increase in crashes, and, furthermore, it is likely that there could be a moderate decrease in crashes for eastbound I-70 traffic.

### 6.3 General Safety Observations Concerning PPSL Elements

While overall the conclusion is that the proposed PPSL project will not result in a decrease in safety, there should still be comprehensive monitoring of both peak and off-peak operations after implementation. The following discussion provides a qualitative assessment concerning the potential impacts to safety of various design elements and measures that should be included in the design of the PPSL that minimize potential adverse safety impacts.

Merge and Diverge Areas - Since the PPSL is on the left side, there will be no changes to how on-ramps and off-ramps operate between peak and off-peak conditions. Thus, the safety characteristics of these should remain the same as currently, with some possibility for minor improvement.

Intermediate Access and Egress Points - The number of access points should be limited in order to reduce the chance for the conditions that have been found to cause crashes at access points on buffer separated HOV lanes in Texas and California.

Variable Speed Limit (VSL) Signs - VSL signs are an important safety consideration and should be utilized through the PPSL corridor. They will serve to moderate speed differentials and harmonize traffic between the managed lane and general purpose lanes. Based on on-going experience once the PPSL is operational, a differential of up to $15-20 \mathrm{MPH}$ should not present undue safety concerns, especially with minimal lane changing.

Emergency Pull-outs - The number of emergency pull-outs and off-ramp locations should minimize disturbances to peak traffic operations due to breakdowns. The average spacing for emergency pull outs or interchanges is approximately 1.0 miles.

Monitoring of Operations by CDOT Staff - The PPSL corridor will have complete video coverage by closed circuit television cameras (CCTV). This will allow personnel at the CTMC to monitor traffic flow when the managed lane is operational.

Signs - The signing associated with the PPSL will be a critical component of the traffic control and operations of the lane.

Opening Procedures - The PPSL should only be opened after it has been determined that the shoulder lane is clear of stationary vehicles, debris, standing water, and/or snow.

Emergency Response - The project team has closely coordinated with emergency service providers in Clear Creek County, and a summary of emergency response procedures has been prepared.

### 6.4 General Safety Conclusions

Safety was analyzed based on the geometric features and changes in the level of congestion that are inherent to the PPSL concept. The calculations show that the safety improvement due to reduced congestion could more than offset the safety implications resulting from changes to the number of lanes, their widths, and the shoulders (while utilizing the existing pavement section, for the most part). Overall, the calculations result in a small forecasted improvement in safety.

However, there should be comprehensive monitoring of both peak and off-peak operations after the PPSL is implemented. Traffic operations and safety should be reviewed frequently, not just in the PPSL corridor but from the Eisenhower Johnson Memorial Tunnel (EJMT) to the Clear Creek County / Jefferson County boundary. There should be significant reductions in congestion throughout Clear Creek County.

The following data is normally collected by CDOT in the normal course of operations and should be very valuable:

- Crash records - should be reviewed by day of the week, season, lane, etc.
- Automatic Traffic Recorders (ATR) - are maintained by CDOT at the Twin Tunnels and EJMT, and they record volumes by vehicle classification for each lane.
- Speed and Travel Time Indicators - are placed throughout the I-70 Mountain Corridor.
- VISSIM and DynusT Computer Models - have been calibrated for the I-70 Mountain Corridor and can be used to analyze the impacts of changes that could potentially improve operations further.


### 7.0 REFERENCES

1 Safety Assessment Report - State Highway 70A - MP 230.00 to MP 242.00 - Region 1, CDOT, October 25, 2013
2 Concept of Operations for I-70 Peak Period Shoulder Lane, Apex Design, October 2013 (draft)
3 Changeable Speed Limits - Concept of Operations, 2013 by Navjoy and Kritek
4 Efficient Use of Highway Capacity Summary, Report to Congress, FHWA, November 2010
5 Freeway Geometric Design for Active Traffic management in Europe, FHWA, March 2011
6 Design and Operations Elements of Dynamic Shoulder Use - Final Report, FHWA, October 2013
7 Managed Motorways - Experience from the UK, Kamnitzer and Simpson, 2012 Conference of the Transportation Association of Canada.
8 M42 ATM Monitoring and Evaluation - Project Summary Report, Mott MacDonald, November 2009.
9 M42 ATM Monitoring and Evaluation - Three Year Safety Review, Highways Agency, January 2011.
10 Highway Safety Manual, Volume 3, $1^{\text {st }}$ Edition, American Association of State Highway and Transportation Officials (AASHTO), 2010.
11 Relationship Between Freeway Flow Parameters and Safety and Its Implications for Hard Shoulder Running, Kononov, Hersey, Reeves, and Allery, TRB - TRR 2280, pg. 10-17.
12 I-70 Peak Period Shoulder Lane - Traffic Analysis Feasibility Study, Atkins, February 2013.

13 Managed Motorways All Lanes Running, Concept of Operations, Highways Agency, March 2012.

APPENDIX A SAFETY ASSESSMENT REPORT - STATE HIGHWAY 70A - MP 230.00 TO MP 242.00 - REGION 1, OCTOBER 25, 2013



## A Statement of Philosophy

The efficient and responsible investment of resources in addressing safety problems is a difficult task. Since crashes occur on all highways in use, it is inappropriate to say of any highway that it is safe. However, it is correct to say that highways can be built to be safer or less safe. Road safety is a matter of degree. When making decisions affecting road safety, it is critical to understand that expenditure of limited available funds on improvements in places where it prevents few injuries and saves few lives can mean that injuries will occur and lives will be lost by not spending them in places where more crashes could have been prevented ${ }^{1}$. It is CDOT's objective to maximize crash reduction within the limitations of available budgets by making road safety improvements at locations where it does the most good or prevents the most crashes.

## INTRODUCTION

The Transportation Equity Act for the 21st Century (TEA-21) of 1998 requires explicit consideration of safety in the transportation planning process. While this government mandate is well intentioned, little is known about how to accomplish it. In order to meet this requirement, CDOT has employed a recently developed concept of the Level of Service of Safety ${ }^{2}$ (LOSS). The LOSS concept makes it possible to accomplish the following:

- Qualitatively describe the degree of safety or un-safety of a roadway segment.
- Effectively communicate the magnitude of the safety problem to other professionals or elected officials.
- Bring perception of roadway safety in line with reality of safety performance reflecting a specific facility.
- Provide a frame of reference from a safety perspective for planning major corridor improvements.

The safety analysis provided in this technical report supports an environment study for a portion of Interstate 70 (I-70) between MP 230.00 and MP 242.00. The scope of the safety assessment is as follows:

- Assess the magnitude and nature of the safety problem within the project limits.
- Relate crash causality to roadway geometrics, roadside features, traffic control devices, traffic operations, driver behavior and vehicle type.
- Suggest counter measures to address identified problems within context of the proposed action.

This report is based on the analysis of five years of crash history and a field visit by Felsburg Holt \& Ullevig staff. The Region is advised to verify, through field survey, the information included in this report regarding physical features and roadside characteristics in the study area.

[^0]
## PROJECT DESCRIPTION

The purpose of the I-70 Peak Period Shoulder Lane (PPSL) project is to relieve peak period congestion on eastbound Interstate 70 through the construction of a peak period shoulder lane. The concept of the PPSL would allow vehicles to travel in two eastbound travel lanes and use a shoulder as an additional travel lane during peak periods. The goal is to implement an operational improvement, which would produce three lanes of traffic in the peak travel periods, in order to help alleviate congestion. The shoulder lane would be managed (tolled) to insure that it remains uncongested and relatively free flowing during the peak periods. The PPSL concept would use the existing roadway template (approximately 38 feet) to the maximum extent possible and would only add minimal new pavement as appropriate. The PPSL would extend from Empire Junction (MP 232) to east Idaho Springs (MP 241).

The purpose of this safety assessment is to identify safety issues along this segment of highway and potential improvements to improve safety. This study identifies crash patterns for both the eastbound and westbound directions of travel. This study also provides general safety improvements to be considered. These suggested improvements are limited to the eastbound direction of travel since the PPSL project would only involve the eastbound travel. A separate safety analysis of the PPSL is being conducted to analyze the safety implications of implementation.

## SITE LOCATION

This study addresses a section of Interstate 70 beginning at MP 230.00 , just west of the interchange with the US 40 (Empire Junction) and extending to MP 242.00 which is just east of Idaho Springs. The direction of increasing milepost (primary direction) for this section of I-70 is eastbound. This section of I-70 is classified as a Federal-Aid Interstate (FAI) state highway.

## SITE CONDITIONS

According to CDOT records, the 2012 average annual daily traffic (AADT) varied between approximately 37,000 vehicles per day (vpd) and $47,000 \mathrm{vpd}$. As a percentage of the total vehicular traffic volume, the average truck volume across the section is 7.5 percent.

The following observations related to the study corridor were made from the current CORIS file and the CDOT video log:

- A typical cross section includes 10 -foot outside shoulders (although they vary throughout the corridor and are as narrow as 2 -feet), two 12-foot travel lanes and 4 -foot inside shoulders in each direction.
- The median type varies throughout the corridor from either a depressed median of approximately 4 to 30 feet in width to a concrete barrier median.
- Guard rail and concrete barriers are located on both the inside and outside shoulders throughout the corridor in the vicinity of interchanges, over and underpasses and through curves.
- There are rumble strips throughout portions of the study corridor.
- There are luminaires located in the vicinity of the interchanges along the study corridor.
- There are seven interchanges within the study corridor: US 40 (Empire Junction) (MP 231.89), Downieville (MP 234.21), Dumont (MP 235.01), Fall River Road (MP 237.66), I-70

Business Route (MP 238.89), SH 103 (MP 239.65), and I-70 Business Route (MP 241.13). There is also an eastbound off ramp at Lawson (MP 232.89). In addition, the Twin Tunnels are located at MP 242.29 just to the east of the study segment.

- The posted speed limit on I-70 is currently 65 miles per hour ( mph ) in both direction from the start of the study corridor to MP 238.00 and 60 mph from MP 238.00 to MP 241.90. From MP 241.90 to the end of the corridor the speed limit is 55 mph .


## CRASH HISTORY AND PROBLEM ANALYSIS

Crash history for the five-year period, January 1, 2008 through December 31, 2012, was examined between MP 230.00 and MP 242.00 to locate crash clusters and identify crash causes.

Table 1 summarizes the number of crashes for I-70 over the five-year study period. Of note, these totals include both mainline and ramp crashes along this section. As can be seen in this table, the total number of crashes has fluctuated from year to year over the five-year study period with a slight majority of the crashes (approximately 55 percent) occurring in the eastbound direction.

Table 1
SH 70A: MP 230.00 - MP 242.00

| Period | Number of Crashes |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Prop. Damage Only |  | Injury |  | Fatality |  | Total |  |
|  | EB | WB | EB | WB | EB | WB | EB | WB |
| 01/01/2008-12/31/2008 | 91 | 82 | 6 | 3 | 0 | 1 | 97 | 86 |
| 01/01/2009-12/31/2009 | 85 | 59 | 9 | 2 | 0 | 0 | 94 | 61 |
| 01/01/20010-12/31/20010 | 78 | 73 | 4 | 4 | 0 | 1 | 82 | 78 |
| 01/01/20011-12/31/2011 | 70 | 73 | 3 | 7 | 0 | 0 | 73 | 80 |
| 01/01/20012-12/31/2012 | 75 | 47 | 3 | 4 | 0 | 0 | 78 | 51 |
| Total (01/01/2008-12/31/2012) | 399 | 334 | 25 | 20 | 0 | 2 | 424 | 356 |
| Overall 5-Year Average per Year | 79.8 | 66.8 | 5 | 4 | 0 | 0.4 | 84.8 | 71.2 |

## Crash History

During the five-year study period there were 780 reported crashes within the study limits including mainline I-70 crashes, ramp crashes and ramp terminal intersection crashes. There were 733 PDO crashes, 45 injury crashes with 61 injuries, and 2 fatal crashes. Figure 1 presents a graphical representation of crash types for this area. Fixed object type crashes ( $37 \%$ ) were the predominant crash type followed by rear end type crashes (35\%). The general crash summary sheet is presented in the Appendix.

Figure 1


## Corridor Wide Crash Patterns

There are several factors that contribute to the cause of crashes along the study corridor. Some of the primary factors include; the horizontal curvature of I-70, travel speed, traffic congestion due to weekend traffic, and inclement weather / road conditions. For many of the crashes, more than one of these factors contributed. In order to better understand these factors and how they influenced crashes, the circumstances surrounding the most predominant crash types along the corridor were reviewed. The crash types reviewed include the most predominant fixed object type crashes (concrete barrier, guard rail, and embankments), rear end type crashes, and sideswipe (same direction) type crashes. These crash types comprise 82 percent of the crashes along the corridor. The direction of each of these crash types as well as the time of year and day of the week were reviewed.

The corridor was split into seven analysis segments, based on each of the seven interchanges. Each of these seven segments was then subdivided into smaller segments typically based on the curves along I-70. In all, there are a total of nine curves analyzed along the entire study
segment. Figures showing the locations of these segments and curves are included in the following segment discussions. The complete tables showing the segmentation and the breakdown of the crashes can be found in the appendix. However, Table 2 and Table 3 show a summary of the tables provided in the appendix. Table 2 shows a summary of the directionality of the most predominant crash types occurring along I-70.

Table 2
Directionality of Predominant Crash Types

| Guardrail / Concrete Barrier / <br> Embankment $/$ Cable Rail |  |  | Rear End |  |  |  | Sideswipe same direction |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EB | WB | Total | EB | WB | Total | EB | WB | Total |  |
| $101(42 \%)$ | $138(58 \%)$ | 239 | $191(69 \%)$ | $84(31 \%)$ | 275 | $55(71 \%)$ | $23(29 \%)$ | 78 |  |

As Table 2 shows, the majority of crashes on I-70 occurred in the eastbound direction. However, the disparity in the distribution between eastbound and westbound is most significant for the rear end and sideswipe type crashes. This is not entirely unexpected as these accident types are related to congestion, and this segment of I-70 experiences high levels of congestion in the eastbound direction. The fixed object crashes occur at slightly higher rates in the westbound direction. This is likely because the westbound direction does not experience as much congestion making it easier to travel at a higher rate of speed, which can lead to run-off-the-road type crashes. These vehicles are more likely to lose control traveling through the curves along I-70, leave their lane and strike a fixed object.

Given the higher rates of congestion on weekends and holidays in the corridor, an analysis was completed to determine the season and day of week most common to each of the predominant crash types. The patterns identified by this analysis will help to determine what factors are contributing to the most predominant crash types on I-70. Table 3 shows the time of year (winter or summer) and day of the week (weekday or weekend / holiday) that each of the predominant crash types occurred along l-70. Tables 4 and 5 separate the crashes by direction showing eastbound and westbound, respectively.

Table 3
Seasonality and Day of Week of Predominant Crash Types - Both Directions

|  | Guardrail / Concrete Barrier / Embankment / Cable Rail |  |  |  | Rear End |  |  |  | Sideswipe same direction |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total |
| Winter (Nov. Apr.) | 120 | 18 | 19 | 157 | 86 | 48 | 61 | 195 | 27 | 12 | 7 | 46 |
| Summer (May Oct.) | 56 | 12 | 14 | 82 | 26 | 6 | 48 | 80 | 19 | 5 | 8 | 32 |

Table 4
Seasonality and Day of Week of Predominant Crash Types - Eastbound

|  | Guardrail / Concrete Barrier / Embankment / Cable Rail |  |  |  | Rear End |  |  |  | Sideswipe same direction |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total |
| Winter (Nov. Apr.) | 54 | 8 | 10 | 72 | 53 | 26 | 51 | 130 | 17 | 11 | 3 | 31 |
| Summer (May Oct.) | 19 | 4 | 6 | 29 | 14 | 4 | 43 | 61 | 13 | 4 | 7 | 24 |

Table 5
Seasonality and Day of Week of Predominant Crash Types - Westbound

|  | Guardrail / Concrete Barrier / Embankment / Cable Rail |  |  |  | Rear End |  |  |  | Sideswipe same direction |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total |
| Winter (Nov. Apr.) | 66 | 10 | 9 | 85 | 33 | 22 | 10 | 65 | 10 | 1 | 4 | 15 |
| Summer (May Oct.) | 37 | 8 | 8 | 53 | 12 | 2 | 5 | 19 | 6 | 1 | 1 | 8 |

As can be seen in these tables, the majority of the predominant crash types on the study segment are occurring during the winter season. However, the fixed object type crashes are more common on weekdays while the rear end and sideswipe crashes are more common on weekends when traffic congestion is more widespread. In fact, almost 50 percent of the eastbound rear end crashes occur on Sundays.

Tables 6 and 7 provide the average speeds at which the predominant crash types occurred in the eastbound and westbound directions, respectively. As shown, the run-off-the-road fixed object type crashes occurred at a higher rate of speed than other accident types. The rear end type crashes occurred at the lowest average rate of speed, indicating they usually occurred in congestion.

Table 6
Average Speed of Predominant Crash Types - Eastbound

|  | Guardrail / Concrete Barrier / Embankment / Cable Rail |  |  | Rear End |  |  | Sideswipe same direction |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time of Day | Weekday (M-F) | Weekend (Sat Sun) | All | Weekday (M-F) | Weekend (Sat Sun) | All | Weekday (M-F) | Weekend (Sat Sun) | All |
| Daytime | 59.1 | 57.9 | 58.8 | 35.8 | 36.5 | 36.3 | 50.5 | 48.2 | 49.5 |
| Nighttime | 61.5 | 65.8 | 62.9 | 36.0 | 39.4 | 38.6 | 53.0 | 46.9 | 49.2 |

Table 7
Average Speed of Predominant Crash Types - Westbound

|  | Guardrail / Concrete Barrier / Embankment / Cable Rail |  |  | Rear End |  |  | Sideswipe same direction |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time of Day | Weekday (M-F) | Weekend (Sat Sun) | All | Weekday (M-F) | Weekend (Sat Sun) | All | Weekday (M-F) | Weekend (Sat Sun) | All |
| Daytime | 57.3 | 56.9 | 57.3 | 45.9 | 37.5 | 41.7 | 47.5 | 45.0 | 46.8 |
| Nighttime | 56.0 | 57.0 | 56.3 | 36.0 | 51.3 | 40.4 | 57.5 | - | 57.5 |

## General Observations

As discussed, concrete highway barrier, guard rail and embankment crashes were the most common of the fixed object type crashes along the study corridor. In general, the guardrail and barrier involved in the crashes usually prevented a more serious crash. The occurrence of these crashes was typically related to road conditions, the curvature in mainline I-70 throughout the corridor, vehicle speeds in the given road conditions or on the given curve, and / or the lighting conditions at night along l-70. Due to these patterns, there are several mitigation measures that should be considered during the design of the proposed action. First, due to the high occurrence of crashes at night (See Table 8), consideration should be given to reviewing the existing lighting along the corridor to ensure that it is sufficient. Currently, there is lighting at all the interchanges within the study area. Consideration should also be given to using highly reflective pavement markings, installing linear barrier delineation and replacing all delineator post reflector buttons and rail reflector tabs to provide better and consistent nighttime delineation throughout the corridor. Replacing damaged median barrier and guard rail should also be considered as the barrier and rails may not perform as designed when damaged.

Along with the reconstruction in association with the improvement alternative, "Safety Edge" methods should be utilized when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide. In addition, a copy of the "Safety Edge" pamphlet is provided in the Appendix.

Table 8
Time of Day of Predominant Crash Types

| Time of <br> Day | Guardrail / Concrete <br> Barrier / Embankment / <br> Cable Rail | Rear End | Sideswipe same direction |
| :---: | :---: | :---: | :---: |
| Daytime | 132 | 231 | 57 |
| Nighttime | 107 | 44 | 21 |
| Total | 239 | 275 | 78 |

## Weighted Accident Concentration

A graphical rendering of the change in weighted accident concentration (WAC) through the study limits shown on Figure 2 reveals the locations of crash concentration and severity along the corridor. The complete crash listing and detailed crash summary sheets for this section of I70 are provided in the Appendix.

Figure 2


As shown, there are several locations of crash concentrations throughout the study corridor. In general, the largest concentrations of crashes are in the vicinity of some of the sharper horizontal curves along l-70. The largest peak on the graph coincides with the curves at the Empire Junction interchange.

A review of the crash history at these locations indicated that the peaks shown on Figure 2 are locations with the potential for corrective measures that can be associated with the highway improvement project. The following sections separate mainline crashes and analyze them using Safety Performance Function methodology, with the crashes that occurred on the l-70 ramps reviewed separately.

## Safety Performance Function Analysis

In addition to the examination and comparison of crash rates for the entire study area as well as the WAC analysis, the assessment of the magnitude of safety problems on selected highway sections has been refined through the use of Safety Performance Functions (SPF). The SPF reflects the complex relationship between traffic exposure measured in ADT and the crash count for a unit of road section measured in crashes per mile per year. The SPF models provide an estimate for the expected crash frequency for each interchange influence area, for a range of ADT, among similar facilities. SPF functions are limited to mainline crashes only and as such do not include crashes that occur on ramps.

Development of the SPF lends itself well to the conceptual formulation of the Levels of Service of Safety (LOSS). The concept of level of service uses qualitative measures that characterize safety of an intersection in reference to its expected performance. If the level of safety predicted by the SPF will represent a normal or expected number of crashes at a specific level of ADT, then the degree of deviation from the norm can be stratified to represent specific levels of safety.

LOSS-I - Indicates low potential for crash reduction
LOSS-II - Indicates better than expected safety performance
LOSS-III - Indicates less than expected safety performance
LOSS-IV - Indicates high potential for crash reduction
Gradual change in the degree of deviation of the LOSS boundary line from the fitted model mean reflects the observed increase of variability in crashes as ADT increases. LOSS reflects how the intersection is performing in regard to its expected crash frequency at a specific level of ADT (major street and minor street). It only provides a crash frequency comparison with the expected norm. It does not, however, provide any information related to the nature of the safety problem itself. If a safety problem is present, LOSS will only describe its magnitude from a frequency standpoint. The nature of the problem is determined through diagnostic analysis using direct diagnostics and pattern recognition techniques and is discussed later in this report.

The study section of I-70 is classified as a Rural Mountainous 4-Lane Interstate. The corridor has been broken down into seven analysis segments, each segment associated with one of the seven interchanges. The segmentation for the corridor is presented graphically on Figure 3.

Figure 3


Data for five-years of crash history on I-70 has been plotted for evaluation on the SPF figure shown on Figure 4.

Figure 4


Figure 4 depicts the total crash SPF of I-70 based on the given crash data. As can be seen, the majority of the SPF points for the I-70 segments are near or below the expected value for the given AADTs. Segments 3,4 , and 5 are LOSS I which indicates a much better than expected safety performance and a low potential for improvements. The remaining segments all are LOSS II, which indicates a slightly better than expected safety performance.

The details of the crash occurrence on each of the SPF segments are discussed in more detail in the following sections. The mainline crashes, which correlate to the SPF analyses, are reviewed independently from the ramp crashes and the ramp terminal intersection crashes (if any) in the following sections.

## Segment 1 - US 40, Empire Junction Interchange (MP 230.00 - MP 233.11)

## Mainline Crashes

During the five-year study period there were 189 reported mainline crashes between MP 230.00 and MP 233.11 on I-70. There were 181 property damage only (PDO) crashes, 7 injury crashes and 1 fatal crash. Figure 5 shows Segment 1 in relation to the other roadways in the vicinity. This figure also shows the curve (Curve 1) located on this segment.

Figure 5


The fatal crash on this segment occurred when a westbound vehicle spun out of control on ice and ran off the right side of the road around MP 231.20, overturning and striking a tree. This crash occurred on an unlit section of road around 2 AM in May 2008 on an icy road surface. The vehicle was traveling at approximately 55 mph at the time of the accident and the driver was not wearing a seat belt.

Figure 6 shows the change in weighted accident concentration throughout this segment of I-70. As shown, the largest concentration of crashes occurred on Curve 1 in the segment. Most of the other locations of large spikes in the graph are within the limits of the interchange.

Figure 6


Figure 7 provides a graphical representation of crash types for this segment. Rear end crashes were predominant ( $43 \%$ ) followed by fixed object type crashes ( $26 \%$ ).

Figure 7


Table 9 shows the lighting and roadway conditions present for the fixed object crashes that occurred in this segment by direction.

Table 9
Lighting and Road Conditions for Fixed Object Crash Types

| Lighting Condition | Eastbound |  |  | Westbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dry | Inclement <br> Road <br> Conditions | Total | Dry | Inclement <br> Road <br> Conditions | Total |
|  | $10(21 \%)$ | $4(8 \%)$ | $14(29 \%)$ | $6(13 \%)$ | $8(17 \%)$ | $14(30 \%)$ |
| Night | 0 | $3(6 \%)$ | $3(6 \%)$ | $5(10 \%)$ | $12(25 \%)$ | $17(35 \%)$ |
| Total | $10(21 \%)$ | $7(14 \%)$ | $17(35 \%)$ | $11(23 \%)$ | $20(42 \%)$ | $31(65 \%)$ |

As can be seen in this table, the majority of the eastbound fixed object crashes occurred during the day in dry road conditions, while the highest proportion of the westbound crashes occurred during the night in inclement weather. There was a large concentration of these crash types within Mile 232 which is located in the vicinity of the US 40 Interchange along Curve 1 (see Figure 5). Most of the crashes at this location occurred in the westbound direction in inclement weather. Based on a review of the crash reports, many of these crashes occurred when a driver lost control due to the road conditions. The driver was generally driving too fast for the given conditions.

The proportion of guard rail type crashes were higher than expected for this portion of the study corridor. Of the 24 crashes in this category, 17 of 24 occurred in the westbound direction and 7 of 24 occurred in the eastbound direction.

The proportion of crashes involving wild animals was higher than expected. Of the 17 crashes, 4 occurred in the eastbound direction and 13 occurred in the westbound direction. Fourteen of the wildlife accidents occurred in the summer months (May-October). Nearly all of these crashes were in dry conditions and occurred around dawn or just after dark. There was no location with a large concentration of wild animal crashes as they are distributed fairly evenly across the segment. Consideration should be given to installing wildlife warning signs with flashing beacons along this segment in the westbound direction.

The proportion of rear end type crashes was higher than expected. Unlike the barrier type crashes, the majority of rear end type crashes occurred in the eastbound direction (77 of 82) and most occurred in dry / daylight conditions (59 of 82). Of the eastbound crashes, most occurred on a weekend (48 of 77) and/or in the winter months (64 of 77). Table 10 provides details of the road conditions, season, and day of the week. Figure 8 shows the numbers of crashes by time of day. As shown, the majority of crashes took place around 3 PM, which coincides with the eastbound peak hour of traffic during both the summer and winter months. It should be noted that the roadway congestion is

Figure 8
Rear End Crashes by Time of Day
 worst during the weekends, which coincides with when most of the eastbound accidents occurred. Based on a review of the crash reports, the majority of the rear end type crashes were related to congestion on I-70. It is worth noting that many of the rear end crashes in the eastbound direction occurred around MP 232.0 which is located within Curve 1, so the lack of visibility of the stopped traffic ahead due to the curve may play a role in the crashes along Curve 1. Consideration should be given to adding signing warning of congestion ahead before MP 232.0 in the eastbound direction.

Table 10
Segment 1 Rear End Crashes

| Season | Road Conditions | Eastbound |  |  |  | Westbound |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total |  |
| Winter <br> (Nov. Apr.) | Dry | 24 | 13 | 16 | 53 | 1 | 1 | - | 2 | 55 |
|  | Inclement | 4 | 2 | 5 | 11 | 2 | - | - | 2 | 13 |
|  | Total | 28 | 15 | 21 | 64 | 3 | 1 | - | 4 | 68 |
| Summer (May Oct.) | Dry | 1 | - | 12 | 13 | - | - | 1 | 1 | 14 |
|  | Inclement | - | - | - | - | - | - | - | - | - |
|  | Total | 1 | - | 12 | 13 | - | - | 1 | 1 | 14 |
| Total |  | 29 | 15 | 33 | 77 | 3 | 1 | 1 | 5 | 82 |
| Crashes/Mile |  | 9.3 | 4.8 | 10.6 | 24.8 | 1.0 | 0.3 | 0.3 | 1.6 | 26.4 |

The proportion of sideswipe (same direction) type crashes was also higher than expected for a mountain freeway segment. Of these 20 crashes, 14 occurred in the eastbound direction. The largest number of crashes in the eastbound direction was in the afternoon. The concentration in the westbound direction was around 9 AM. This coincides with the westbound peak hour of traffic. Over half of the eastbound crashes occurred between MP 232.5 and 233.0, many of which occurred at lower speeds in congestion. Consider using highly reflective pavement markings to potentially reduce the number of sideswipe (same direction) crashes on this segment.

## Crash Pattern Summary for the Curve on Segment 1

As mentioned, Curve 1 is within Segment 1 (see Figure 5). The tables in the appendix show the directionality of the predominant crash types (barrier, rear end and sideswipe crashes) on these curves. The seasonality and day of the week trends of the crashes on these curves are also shown in these tables. The following provides a summary of the trends shown in the tables in the appendix.

Curve 1 (MP 231.70 - MP 232.20) - During the study period, there were a total of 56 crashes on this curve, 37 eastbound and 19 westbound. The predominant crash type on this curve was rear end type crashes ( 30 of 56 ) which comprised 54 percent of the total. Of the rear end crashes 28 were eastbound and 2 were westbound. As was the trend for the entire segment, most of these rear end type crashes occurred in dry/daylight conditions during the afternoon peak hours when there was significant congestion.

Due to the frequency of fixed object type accidents, consideration should also be given to installing dynamic speed monitoring displays (DSMD) to inform drivers of excessive speeds and encourage them to slow down. In addition, consider installing variable speed limit (VSL) signs add adjusting the speed limit based on road and weather conditions.

## Segment 1 Mainline Recommendations

Consideration should be given to using highly reflective pavement markings and replacing all delineator post reflector buttons, rail reflector tabs and installing linear barrier delineation to provide better and consistent nighttime delineation throughout the corridor. Replacing damaged median barrier and guard rail should also be considered as the barrier and rails may not perform as designed when damaged. Due to the frequency of wild animal type crashes, consideration should be given to installing wildlife warning signs with flashing beacons along this segment in the westbound direction.

In addition, the new pavement with the reconstruction of I-70 should help to improve skid resistance along the corridor and could help to reduce the number of run-off-road crashes. Along with the reconstruction, "Safety Edge" methods should be used when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway in a controlled manner. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide. In addition, a copy of the "Safety Edge" pamphlet is provided in the Appendix. Finally, consideration should be given to installing rumble strips along the westbound shoulder which could help to reduce the number of run-off-the-road crashes along the corridor.

## I-70 / US 40 (Empire Junction) Interchange Ramp Crashes

During the five-year study period there were 19 reported crashes on the ramps of the Empire Junction interchange. The highest crash type during the study period were fixed object type crashes with 10 crashes, eight of which occurred on the eastbound to northbound loop ramp. Most crashes on the loop ramp occurred in dry road conditions during daylight hours and were the result of excessive speed. Currently there is a ramp advisory 15 mph speed sign (W13-7) approximately 300 feet prior to the exit and three chevron alignment signs (W1-8) on the ramp curve. Consideration should be given to additional signing to warn of the curve or consider installing dynamic speed monitoring displays (DSMD) to inform drivers of excessive speeds and encourage them to slow down. In addition, consider clearing some of the trees off the right side of the ramp. These bushes block visibility of the curve and clearing some may help to make drivers aware of the sharp curve ahead.

## Segment 2 - Downieville Interchange (MP 233.12 - MP 234.69)

## Mainline Crashes

During the five-year study period there were 102 reported mainline crashes between MP 233.11 and MP 234.69 on I-70. There were 96 property damage only (PDO) crashes and 6 injury crashes. Figure 9 shows Segment 2 in relation to the other roadways in the vicinity. This figure also shows the curve (Curve 2) located on this segment.

Figure 9


Figure 10 shows the change in weighted accident concentration throughout this segment of I70. As shown, the largest concentration of crashes occurred on Curve 2 in the segment and within the limits of the interchange.

Figure 10


Figure 11 provides a graphical representation of crash types for this segment. Rear end and fixed object crashes were predominant ( $36 \%$ each).

Figure 11

## Crash Type Distribution SH 70A - Downieville Interchange (MP 234.27) 102 Total Crashes



Table 11 shows the lighting and roadway conditions present for the fixed object crashes that occurred in this segment by direction.

Table 11
Lighting and Road Conditions for Fixed Object Crash Types

| Lighting Condition | Eastbound |  |  | Westbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dry | Inclement <br> Road <br> Conditions | Total | Dry | Inclement <br> Road <br> Conditions | Total |
|  | $4(11 \%)$ | $7(20 \%)$ | $11(31 \%)$ | $10(29 \%)$ | $5(14 \%)$ | $15(43 \%)$ |
| Night | 0 | $2(6 \%)$ | $2(6 \%)$ | $4(11 \%)$ | $3(9 \%)$ | $7(20 \%)$ |
| Total | $4(11 \%)$ | $9(26 \%)$ | $13(37 \%)$ | $14(40 \%)$ | $8(23 \%)$ | $22(63 \%)$ |

As can be seen in this table, the distribution of fixed object crashes among the various road condition categories was fairly equal, while most of the crashes occurred during the day. There was a large concentration of these crash types around MP 233.5, at the eastern edge of Curve 2, and 234.1, in the vicinity of the interchange. Both locations which show large spikes in the weighted accident concentration graph. Based on a review of the crash reports, most of these crashes around MP 233.5 occurred in poor road conditions when a westbound driver lost control due to the road conditions and/or excessive speed and hit the barrier or rail. The driver was generally driving too fast for the given conditions. However, the rail and barrier involved in the crashes generally prevented a more serious crash from occurring. While the crashes in the vicinity of 234.1 occurred fairly equally in both directions with almost all resulting in a guard rail
type crash, these too were primarily due to drivers driving too fast for road conditions and losing control.

Of the fixed object crashes, the proportion of guard rail and concrete barrier type crashes also were higher than expected for this portion of the study corridor. Of the 32 crashes in these two categories, 20 of 32 occurred in the westbound direction and 12 of 32 occurred in the eastbound direction.

The proportion of rear end type crashes was higher than expected. Unlike the barrier type crashes, the majority of rear end type crashes occurred in the eastbound direction (26 of 35) and most occurred in dry / daylight conditions (28 of 35 ). Of the eastbound crashes, most occurred on a weekend ( 21 of 26) and/or in the winter months (18 of 26). Table 12 provides details of the road conditions, season, and day of the week. Figure 12 shows the numbers of crashes by time of day. As shown, the majority of crashes took place around 3 PM, which coincides with the eastbound peak hour of traffic during both the summer and winter months. It should be noted that the roadway congestion is worst during the

Figure 12
Rear End Crashes by Time of Day
 weekends, which coincides with when most of the eastbound accidents occurred. Based on a review of the crash reports, the majority of the rear end type crashes were related to congestion on I-70.

Table 12
Segment 2 Rear End Crashes

| Season | Road Conditions | Eastbound |  |  |  | Westbound |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total |  |
| Winter (Nov. Apr.) | Dry | 7 | 2 | 4 | 13 | 3 | 1 | 1 | 5 | 18 |
|  | Inclement | - | 1 | 4 | 5 | - | 1 | - | 1 | 6 |
|  | Total | 7 | 3 | 8 | 18 | 3 | 2 | 1 | 6 | 24 |
| Summer <br> (May Oct.) | Dry | - | - | 8 | 8 | 1 | - | 2 | 3 | 11 |
|  | Inclement | - | - | - | - | - | - | - | - | - |
|  | Total | - | - | 8 | 8 | 1 | - | 2 | 3 | 11 |
| Total |  | 7 | 3 | 16 | 26 | 4 | 2 | 3 | 9 | 35 |
| Crashes/Mile |  | 4.5 | 1.9 | 10.2 | 16.6 | 2.5 | 1.3 | 1.9 | 5.7 | 22.3 |

The proportion of sideswipe (same direction) type crashes was also higher than expected for Segment 2. Of these 11 crashes, there was a fairly even split between crashes that occurred in the eastbound direction and those that occurred in the westbound direction. The largest number of crashes in the eastbound direction was at 4 PM in the afternoon, while the concentration in the westbound direction was between 6 AM and 8 AM. These timeframes coincide with the peak hours of traffic for each direction. There is a concentration in crashes at MP 234.0, which is at the interchange. Consider using highly reflective pavement markings.

The proportion of large rock type crashes is higher than expected for this segment with 4 crashes. All the crashes occurred in the westbound direction between MP 233.4 and 233.5. There is a large, rocky hill adjacent to this segment of the freeway, however all the crashes were run-off-the-road crashes that occurred when the vehicles left the roadway due to inclement conditions and/or excessive speeds. There was no incidents of rocks causing crashes in the lane of travel.

## Crash Pattern Summary for the Curve on Segment 2

As mentioned, Curve 2 is within Segment 2 (see Figure 9). The tables in the appendix show the directionality of the predominant crash types (barrier, rear end and sideswipe crashes) on these curves. The seasonality and day of the week trends of the crashes on these curves are also shown in these tables. The following provides a summary of the trends shown in the tables in the appendix.

Curve 2 (MP 233.25 - MP 233.55) - During the study period, there were a total of 25 crashes on this curve, 8 eastbound and 17 westbound. The predominant crash type on this curve was
fixed object (guard rail, barrier, embankment) type crashes (10 of 25) which comprised 40 percent of the total. Of the fixed object crashes 3 were eastbound and 7 were westbound. These crashes generally occurred during the winter in inclement road condition.

## Segment 2 Mainline Recommendations

Consideration should be given to using highly reflective pavement markings and replacing all delineator post reflector buttons, rail reflector tabs and installing linear barrier delineation to provide better and consistent nighttime delineation throughout the corridor. Replacing damaged median barrier and guard rail should also be considered as the barrier and rails may not perform as designed when damaged.

Finally, the new pavement with this project should help to improve skid resistance along the corridor. This should help to reduce the number of crashes along this segment. Along with the reconstruction, "Safety Edge" methods should be used when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway in a controlled manner. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide. In addition, a copy of the "Safety Edge" pamphlet is provided in the Appendix.

## I-70 / Downieville Interchange Ramp Crashes

During the five-year study period there were 6 reported crashes on the ramps of the I-70 Business Route interchange. Four of these crashes occurred at the westbound weigh station, 3 of which involved other fixed objects. Based on a review of the crash reports, there does not appear to be a correctable pattern for these crashes.

## Segment 3 - Dumont Interchange (MP 234.70 - MP 236.41)

## Mainline Crashes

During the five-year study period there were 104 reported mainline crashes between MP 234.70 and MP 236.41 on I-70. There were 95 property damage only (PDO) crashes and 9 injury crashes. Figure 13 shows Segment 3 in relation to the other roadways in the vicinity. This figure also shows the curve (Curve 3) located on this segment.

Figure 13


Figure 14 shows the change in weighted accident concentration throughout this segment of I70. As shown, the largest concentration of crashes occurred on Curve 3 in the segment.

Figure 14


Figure 15 provides a graphical representation of crash types for this segment. Rear end crashes were predominant (52\%) followed by fixed object type crashes (23\%).

Figure 15


The proportion of rear end type crashes was higher than expected along Segment 3. Unlike previous segments, the rear end crashes were fairly evenly distributed by direction with 28 of 54 occurring in the eastbound direction and 26 of 54 occurring in the westbound direction. Most of these crashes occurred in dry / daylight conditions (47 of 54). Of the rear crashes, most occurred on a weekend ( 45 of 54) and/or in the winter months (38 of 54). Table 13 provides details of the road conditions, season, and day of the week. Figure 16 shows the numbers of crashes by time of day. As shown, the majority of crashes took place around 8 AM with another smaller peak around 3 PM. All of the crashes that took place around the

Figure 16 Rear End Crashes by Time of Day
 morning peak occurred in the westbound direction and this coincides with the westbound peak hour of traffic. Most of the afternoon accidents occurred in the eastbound direction and the eastbound peak hour occurs around 3 PM. It should also be noted that the roadway congestion is worst during the weekends, which coincides with when most of the accidents occurred. Based on a review of the crash reports, the majority of the rear end type crashes were related to congestion on I-70.

Table 13
Segment 3 Rear End Crashes

| Season | Road Conditions | Eastbound |  |  |  | Westbound |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total |  |
| Winter (Nov. Apr.) | Dry | 7 | - | 8 | 15 | 10 | 2 | 5 | 17 | 32 |
|  | Inclement | 1 | 1 | - | 2 | 1 | 3 | - | 4 | 6 |
|  | Total | 8 | 1 | 8 | 17 | 11 | 5 | 5 | 21 | 38 |
| Summer (May Oct.) | Dry | 3 | 1 | 7 | 11 | 3 | 1 | 1 | 5 | 16 |
|  | Inclement | - | - | - | - | - | - | - | - | - |
|  | Total | 3 | 1 | 7 | 11 | 3 | 1 | 1 | 5 | 16 |
| Total |  | 11 | 2 | 15 | 28 | 14 | 6 | 6 | 26 | 54 |
| Crashes/Mile |  | 6.4 | 1.2 | 8.8 | 16.4 | 8.2 | 3.5 | 3.5 | 15.2 | 31.6 |

The proportion of sideswipe (same direction) type crashes was also higher than expected for a mountain freeway segment. Of these 12 crashes, 9 occurred in the eastbound direction. The largest number of crashes in the eastbound direction was in the afternoon. The crashes were typically spread throughout the segment so no correctable pattern has been identified. However, using highly reflective pavement markings could help to reduce the number of sideswipe (same direction) crashes on this segment.

## Crash Pattern Summary for the Curve on Segment 3

As mentioned, Curve 3 is within Segment 3 (see Figure 13). The tables in the appendix show the directionality of the predominant crash types (barrier, rear end and sideswipe crashes) on these curves. The seasonality and day of the week trends of the crashes on these curves are also shown in these tables. The following provides a summary of the trends shown in the tables in the appendix.

Curve 3 (MP 234.9 - MP 235.1) - During the study period, there were a total of 29 crashes on this curve, 14 eastbound and 15 westbound. The predominant crash type on this curve was rear end type crashes ( 14 of 29 ) which comprised 48 percent of the total. Of the rear end crashes 6 were eastbound and 8 were westbound. As was the trend for the entire segment, all of these rear end type crashes occurred in dry/daylight conditions. The eastbound crashes primarily occurred during the eastbound peak hour of travel, while most of the westbound crashes occurred in the morning.

## Segment 3 Mainline Recommendations

Based on a review of the rear end crash reports, consideration should be given to using highly reflective pavement markings and replacing all delineator post reflector buttons, rail reflector tabs and installing linear barrier delineation to provide better and consistent nighttime delineation throughout the corridor. Replacing damaged median barrier and guard rail should also be considered as the barrier and rails may not perform as designed when damaged.

In addition, the new pavement with the reconstruction of I-70 should help to improve skid resistance along the corridor and could help to reduce the number of run-off-road crashes. Along with the reconstruction, "Safety Edge" methods should be used when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway in a controlled manner. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide. In addition, a copy of the "Safety Edge" pamphlet is provided in the Appendix.

## I-70 / Dumont Interchange Ramp Crashes

During the study period, there were only a total of 3 crashes on the ramps or at the ramp terminals at this interchange. There was one accident of each of the following crash types: broadside, sideswipe, and wild animal.

Due to the low number of crashes, no recommendations have been made for the ramps at this interchange.

## Segment 4 - Fall River Road Interchange (MP 236.42 - MP 238.33)

## Mainline Crashes

During the five-year study period there were 117 reported mainline crashes between MP 236.42 and MP 238.33 on I-70. There were 106 property damage only (PDO) crashes, 10 injury crashes, and one fatality crash. Figure 17 shows Segment 4 in relation to the other roadways in the vicinity. This figure also shows the curves (Curves 4 and 5) located on this segment.

Figure 17


The fatal crash on this segment occurred when a westbound vehicle spun out of control sideswiping another car, hitting a guardrail, and overturning around MP 238.30. This crash occurred during the day in March 2010 on a dry road surface with no inclement weather. The driver of the vehicle was driving under the influence of alcohol at the time of the accident and was not wearing a seat belt.

Figure 18 shows the change in weighted accident concentration throughout this segment of I70. As shown, the largest concentration of crashes occurred on Curves 4 and 5 in the segment.

Figure 18


Figure 19 provides a graphical representation of crash types for this segment. Fixed object crashes were predominant ( $37 \%$ ) followed by rear end type crashes ( $32 \%$ ).

Figure 19


Table 14 shows the lighting and roadway conditions present for the fixed object crashes that occurred in this segment by direction.

Table 14
Lighting and Road Conditions for Fixed Object Crash Types

| Lighting Condition | Eastbound |  |  | Westbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dry | Inclement <br> Road <br> Conditions | Total | Dry | Inclement <br> Road <br> Conditions | Total |
|  | $3(7 \%)$ | $1(2 \%)$ | $4(9 \%)$ | $8(18 \%)$ | $5(12 \%)$ | $12(30 \%)$ |
| Night | $10(23 \%)$ | $5(12 \%)$ | $15(35 \%)$ | $9(21 \%)$ | $2(5 \%)$ | $11(26 \%)$ |
| Total | $13(30 \%)$ | $6(14 \%)$ | $19(44 \%)$ | $17(39 \%)$ | $7(17 \%)$ | $24(56 \%)$ |

As can be seen in this table, the majority of the eastbound fixed object crashes occurred at night in dry road conditions, while the westbound crashes were split between day and night during dry road conditions. There was a large concentration of these crash types along Curve 5 (see Figure 18). Most of the crashes at this location occurred in the eastbound direction. Based on a review of the crash reports, many of these crashes occurred when a driver lost control due to the road conditions or excessive speed. The driver was generally driving too fast for the given conditions and hit the guard rail. However, it is worth noting that the rail involved in the crashes generally prevented a more serious crash from occurring.

The proportion of guard rail and embankment type crashes were higher than expected for this portion of the study corridor. Of the 41 crashes in these two categories, 22 of 41 occurred in the westbound direction and 19 of 41 occurred in the eastbound direction.

The proportion of rear end type crashes was higher than expected. Similar to the barrier type crashes, the majority of rear end type crashes occurred in the westbound direction (22 of 37) in Segment 4. Approximately half of these crashes occurred in dry / daylight conditions (19 of 37). Of the rear end crashes, most occurred on a weekday (19 of 37) and/or in the winter months (22 of 37). Table 15 provides details of the road conditions, season, and day of the week. Figure 20 shows the numbers of crashes by time of day. As shown, the majority of crashes took place around 8 AM and 5 PM. All of the crashes that took place around the morning peak occurred in the westbound direction and this coincides with the westbound peak hour of traffic. Most of the afternoon accidents occurred in the eastbound direction. The eastbound peak hour occurs around 3 PM, so these accidents occurred slightly later than the peak hour of traffic in this direction. It should also be noted that the roadway congestion is worst during the weekends, which coincides with when many of the accidents occurred. Based on a review of the crash reports, the majority of the rear end type crashes were related to congestion on I-70. Many of the westbound rear end crashes occurred within Curve 4. The lack of visibility of the stopped traffic ahead due to the curve may play a role in the crashes along Curve 4.

Table 15
Segment 4 Rear End Crashes

| Season | Road Conditions | Eastbound |  |  |  | Westbound |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total |  |
| Winter (Nov. Apr.) | Dry | - | 4 | 1 | 5 | 6 | 2 | 1 | 9 | 14 |
|  | Inclement | 3 | - | - | 3 | 3 | - | 2 | 5 | 8 |
|  | Total | 3 | 4 | 1 | 8 | 9 | 2 | 3 | 14 | 22 |
| Summer <br> (May Oct.) | Dry | - | - | 5 | 5 | 5 | 1 | - | 6 | 11 |
|  | Inclement | - | 1 | 1 | 2 | 2 | - | - | 2 | 4 |
|  | Total | - | 1 | 6 | 7 | 7 | 1 | - | 8 | 15 |
| Total |  | 3 | 5 | 7 | 15 | 16 | 3 | 3 | 22 | 37 |
| Crashes/Mile |  | 1.6 | 2.6 | 3.7 | 7.9 | 8.4 | 1.6 | 1.6 | 11.5 | 19.4 |

The proportion of sideswipe (same direction) type crashes was also higher than expected for this segment. Of these 15 crashes, 10 occurred in the eastbound direction. The largest number of crashes in the eastbound direction was around 4 PM in the afternoon, which is about the time of the peak hour of traffic in that direction. The crashes were typically spread throughout the segment so no correctable pattern has been identified. However, using highly reflective pavement markings could help to reduce the number of sideswipe (same direction) crashes on this segment.

## Crash Pattern Summary for Curves on Segment 4

As mentioned, Curves 4 and 5 are within Segment 4 (see Figure 17). The tables in the appendix show the directionality of the predominant crash types (barrier, rear end and sideswipe crashes) on these curves. The seasonality and day of the week trends of the crashes on these curves are also shown in these tables. The following provides a summary of the trends shown in the tables in the appendix.

Curve 4 (MP 237.05 - MP 237.25 ) - During the study period, there were a total of 24 crashes on this curve, 10 eastbound and 14 westbound. The predominant crash type on this curve was rear end type crashes ( 10 of 24 ) which comprised 42 percent of the total. Of the rear end crashes 2 were eastbound and 8 were westbound. As was the trend for the entire segment, approximately half these rear end type crashes occurred in dry/daylight conditions.

Curve 5 (MP 237.25 - MP 237.55) - During the study period, there were a total of 27 crashes on this curve, 19 eastbound and 8 westbound. The predominant crash type on this curve was fixed object (guard rail, embankment) type crashes (13 of 27) which comprised 48 percent of the
total. Of the fixed object crashes 9 were eastbound and 4 were westbound. These crashes generally occurred during the winter in inclement road conditions.

## Segment 4 Mainline Recommendations

Consideration should be given to using highly reflective pavement markings and replacing all delineator post reflector buttons, rail reflector tabs and installing linear barrier delineation to provide better and consistent nighttime delineation throughout the corridor. Replacing damaged median barrier and guard rail should also be considered as the barrier and rails may not perform as designed when damaged.

In addition, the new pavement with this project should help to improve skid resistance along the corridor. Along with the reconstruction, "Safety Edge" methods should be used when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway in a controlled manner. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide. In addition, a copy of the "Safety Edge" pamphlet is provided in the Appendix.

## I-70 / Fall River Road Interchange Ramp Crashes

During the study period, there were only a total of 3 crashes on the ramps or at the ramp terminals at the Fall River Road interchange. There were 2 broadside type crashes and 1 rear end type crash.

Due to the low number of crashes, no recommendations have been made for the ramps at this interchange.

## Segment 5 - SH 70K Interchange (MP 238.34 - MP 239.31)

## Mainline Crashes

During the five-year study period there were 37 reported mainline crashes between MP 238.34 and MP 239.31 on I-70. There were 36 property damage only (PDO) crashes and one injury crash. Figure 21 shows Segment 5 in relation to the other roadways in the vicinity.

Figure 21


Figure 22 shows the change in weighted accident concentration throughout this segment of I70. As shown, there are no significant spikes in this segment.

Figure 22


Figure 23 provides a graphical representation of crash types for this segment. Fixed object crashes were predominant ( $70 \%$ ) followed by rear end type crashes (19\%).

Figure 23


Table 16 shows the lighting and roadway conditions present for the fixed object crashes that occurred in this segment by direction.

Table 16
Lighting and Road Conditions for Fixed Object Crash Types

| Lighting Condition | Eastbound |  |  | Westbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dry | Inclement <br> Road <br> Conditions | Total | Dry | Inclement <br> Road <br> Conditions | Total |
|  | $3(12 \%)$ | $1(3 \%)$ | $4(15 \%)$ | $3(12 \%)$ | $8(31 \%)$ | $11(43 \%)$ |
| Night | $3(12 \%)$ | $1(3 \%)$ | $4(15 \%)$ | $5(19 \%)$ | $2(8 \%)$ | $7(27 \%)$ |
| Total | $6(24 \%)$ | $2(6 \%)$ | $8(30 \%)$ | $8(31 \%)$ | $10(39 \%)$ | $18(70 \%)$ |

As can be seen in this table, the majority of the fixed object crashes occurred in the westbound direction with a fairly even distribution between various lighting and road conditions. The largest concentration of crashes occurred around MP 239. Most of the fixed object accidents at this location occurred in the westbound direction during inclement road conditions. Based on a review of the crash reports, many of these crashes occurred when a driver lost control due to the road conditions and hit the barrier or rail. The driver was generally driving too fast for the given conditions. However, the rail and barrier involved in the crashes generally prevented a more serious crash from occurring.

Of the fixed object, the proportion of guard rail, cable rail, and concrete barrier type crashes were all higher than expected for this portion of the study corridor. Of the 19 crashes in these three categories, 14 of 19 occurred in the westbound direction and 5 of 19 occurred in the eastbound direction.

## Segment 5 Mainline Recommendations

Consideration should be given to using highly reflective pavement markings and replacing all delineator post reflector buttons, rail reflector tabs and installing linear barrier delineation to provide better and consistent nighttime delineation throughout the corridor. Replacing damaged median barrier and guard rail should also be considered as the barrier and rails may not perform as designed when damaged.

In addition, the new pavement with this project should help to improve skid resistance along the corridor. Along with the reconstruction, "Safety Edge" methods should be used when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway in a controlled manner. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide. In addition, a copy of the "Safety Edge" pamphlet is provided in the Appendix.

## I-70 / SH 70K Interchange Ramp Crashes

During the study period, there were only a total of 3 crashes on the ramps or at the ramp terminals at this interchange. There were 2 fixed object type crashes and 1 rear end type crash. One of the fixed object type crashes occurred at the eastbound ramp gore point.

Due to the low number of crashes, no recommendations have been made for the ramps at this interchange.

## Segment 6 - SH 103 Interchange (MP 239.32 - MP 240.42)

## Mainline Crashes

During the five-year study period there were 83 reported mainline crashes between MP 239.32 and MP 240.42 on I-70. There were 75 property damage only (PDO) crashes and 8 injury crashes. Figure 24 shows Segment 6 in relation to the other roadways in the vicinity. This figure also shows the curve (Curves 6) located on this segment.

Figure 24


Figure 25 shows the change in weighted accident concentration throughout this segment of I70. As shown, the largest concentration of crashes occurred on Curve 6 in the segment. It should be noted that there is an uphill grade in the eastbound direction along Curve 6. Most of the other locations of large spikes in the graph are within the limits of the interchange.

Figure 25


Figure 26 provides a graphical representation of crash types for this segment. Fixed object crashes were predominant ( $61 \%$ ) followed by rear end type crashes (18\%).

Figure 26


Table 17 shows the lighting and roadway conditions present for the fixed object crashes that occurred in this segment by direction.

Table 17

## Lighting and Road Conditions for Fixed Object Crash Types

| Lighting Condition | Eastbound |  |  | Westbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dry | Inclement <br> Road <br> Conditions | Total | Dry | Inclement <br> Road <br> Conditions | Total |
|  | $12(24 \%)$ | $3(6 \%)$ | $15(30 \%)$ | $8(16 \%)$ | $5(10 \%)$ | $13(26 \%)$ |
| Night | $6(11 \%)$ | $7(14 \%)$ | $13(25 \%)$ | $4(7 \%)$ | $6(12 \%)$ | $10(19 \%)$ |
| Total | $18(35 \%)$ | $9(20 \%)$ | $27(55 \%)$ | $12(23 \%)$ | $11(22 \%)$ | $23(45 \%)$ |

As can be seen in this table, the highest proportion of the eastbound fixed object crashes occurred during the day in dry road conditions, while the westbound crashes had a fairly even distribution between various lighting and road conditions. There are concentrations of fixed object crashes at MP 239.5, at the western portion of the interchange, and MP 240.0 in Curve 6 (see Figure 25). At both these locations most of the crashes occurred in inclement road conditions with a fairly even split between the eastbound and westbound directions. Based on a review of the crash reports, many of these crashes occurred when a driver lost control due to the road conditions and/or excessive speed. The driver was generally driving too fast for the
given conditions and lost control hitting a barrier or rail. It should be noted that barrier and rail crashes typically prevent more serious crashes from occurring.

Of the fixed object, the proportion of guard rail and concrete barrier crashes were higher than expected for this portion of the study corridor. Of the 44 crashes in these categories, 22 of 44 occurred in the westbound direction and 22 of 44 occurred in the eastbound direction.

The proportion of sideswipe (same direction) type crashes was also higher than expected for a mountain freeway segment. Of these 9 crashes, 7 occurred in the eastbound direction. The largest number of crashes in the eastbound direction was in the afternoon at 2 PM, which is around the time of the peak hour of traffic in the eastbound direction. The crashes were typically spread throughout the segment so no correctable pattern has been identified. However, using highly reflective pavement markings could help to reduce the number of sideswipe (same direction) crashes on this segment.

## Crash Pattern Summary for the Curve on Segment 6

As mentioned, Curve 6 is within Segment 6 (see Figure 24) and has a grade. The tables in the appendix show the directionality of the predominant crash types (barrier, rear end and sideswipe crashes) on these curves. The seasonality and day of the week trends of the crashes on these curves are also shown in these tables. The following provides a summary of the trends shown in the tables in the appendix.

Curve 6 (MP 239.90 - MP 240.25) - During the study period, there were a total of 44 crashes on this curve, 26 eastbound and 18 westbound. The predominant crash type on this curve was fixed object (guard rail, barrier, embankment) type crashes ( 25 of 44 ) which comprised 57 percent of the total. Of the fixed object crashes, 14 were eastbound and 11 were westbound. These crashes generally occurred during the winter in inclement road conditions.

## Segment 6 Mainline Recommendations

Consideration should given to using highly reflective pavement markings and replacing all delineator post reflector buttons, rail reflector tabs and installing linear barrier delineation to provide better and consistent nighttime delineation throughout the corridor. In addition, consideration should be given to reviewing the existing lighting along the corridor to ensure that it is sufficient. Replacing damaged median barrier and guard rail should also be considered as the barrier and rails may not perform as designed when damaged.

Finally, the new pavement with this project should help to improve skid resistance along the corridor. This should help to reduce the number of crashes along this segment. Along with the reconstruction, "Safety Edge" methods should be used when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway in a controlled manner. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide. In addition, a copy of the "Safety Edge" pamphlet is provided in the Appendix.

## I-70 / SH 103 Interchange Ramp Crashes

During the study period, there were only a total of 4 crashes on the ramps or at the ramp terminals at the SH 103 interchange. The number of broadside type crashes was the most frequent at 3 occurrences. All three of the broadsides occurred at the eastbound ramp terminal involving an eastbound vehicle getting struck by a southbound vehicle. There is a visibility problem at this terminal and any future bridge replacement should take this into consideration.

## Segment 7 - SH 70K Interchange (MP 240.43 - MP 242.00)

## Mainline Crashes

During the five-year study period there were 106 reported mainline crashes between MP 240.43 and MP 242.00 on I-70. There were 104 property damage only (PDO) crashes and 2 injury crashes. Figure 27 shows Segment 7 in relation to the other roadways in the vicinity. This figure also shows the curves (Curves 7, 8, and 9) located on this segment.

Figure 27


Figure 28 shows the change in weighted accident concentration throughout this segment of I70. As shown, there is a large concentration of crashes on each curve in the segment.

Figure 28


Figure 29 provides a graphical representation of crash types for this segment. Rear end crashes were predominant (40\%) followed by fixed object type crashes (34\%).

Figure 29


Table 18 shows the lighting and roadway conditions present for the fixed object crashes that occurred in this segment by direction.

Table 18
Lighting and Road Conditions for Fixed Object Crash Types

| Lighting Condition | Eastbound |  |  | Westbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dry | Inclement <br> Road <br> Conditions | Total | Dry | Inclement <br> Road <br> Conditions | Total |
|  | $6(17 \%)$ | $6(17 \%)$ | $12(34 \%)$ | $5(14 \%)$ | $2(6 \%)$ | $7(20 \%)$ |
| Night | $5(14 \%)$ | $1(2 \%)$ | $6(16 \%)$ | $7(19 \%)$ | $4(11 \%)$ | $11(30 \%)$ |
| Total | $11(31 \%)$ | $7(19 \%)$ | $18(50 \%)$ | $12(33 \%)$ | $6(17 \%)$ | $18(50 \%)$ |

As can be seen in this table, the distribution of fixed object crashes between the eastbound and westbound directions is fairly equal. In the eastbound direction more crashes occurred during the day in dry road conditions, while in the westbound direction more crashes occurred at night also in dry road conditions.

Of the fixed object, the proportion of concrete barrier crashes was higher than expected for this portion of the study corridor. Of the 18 crashes in these categories, 10 of 18 occurred in the westbound direction and 8 of 18 occurred in the eastbound direction.

There was a large concentration of these crash types around MP 241.5, at the western edge of Curve 9, which coincides with a spike in the weighted accident concentration graph (See Figure 28). Based on a review of the crash reports, all the crashes at this location occurred on inclement road conditions with more occurring in the westbound direction. In most cases the driver lost control due to the road conditions and/or excessive speed and hit the barrier. The driver was generally driving too fast for the given conditions. However, the rail and barrier involved in the crashes generally prevented a more serious crash from occurring.

The proportion of crashes involving wild animals was higher than expected along this segment. Of the 12 crashes, 4 occurred in the eastbound direction and 8 occurred in the westbound direction. Nearly all of these crashes were in dry conditions and occurred around dawn or dusk. There was a large concentration at MP 242.0 with 5 of the westbound crashes occurring at that location. There is a large meadow to the south of I-70 in the vicinity of these mile posts. Consider installing wildlife warning signs with flashing beacons for the westbound direction immediately west of the tunnel. Also, consideration should be given to installing a wild life fence along I-70 in this location. A beacon and wildlife fence could help to reduce the number of wild animal crashes on at this location.

The proportion of rear end type crashes was also higher than expected. The majority of rear end type crashes occurred in the eastbound direction (32 of 42) and most occurred in dry / daylight conditions (28 of 42). Of the eastbound crashes, most occurred on a weekend (23 of 32) and/or in the winter months ( 20 of 32 ). Table 19 provides details of the road conditions, season, and day of the week. Figure 30 shows the numbers of crashes by time of day. As shown, the majority of crashes took place around 3 PM , which coincides with the eastbound peak hour of traffic during both the summer and winter months. It should be noted that the roadway congestion is worst during the weekends, which coincides with

Figure 30
 when most of the eastbound accidents occurred. Based on a review of the crash reports, the majority of the rear end type crashes were related to congestion on I-70. It is worth noting that 14 of rear end crashes occurred around MP 241.0, which is Curve 7 near the interchange, and eight occurred around MP 242.0, in Curve 9.

Table 19
Segment 7 Rear End Crashes

| Season | Road Conditions | Eastbound |  |  |  | Westbound |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weekday (M-F) | Saturday | Sunday | Total | Weekday (M-F) | Saturday | Sunday | Total |  |
| Winter (Nov. Apr.) | Dry | 3 | 2 | 11 | 16 | 2 | 3 | - | 5 | 21 |
|  | Inclement | 3 | - | 1 | 4 | 1 | 3 | - | 4 | 8 |
|  | Total | 6 | 2 | 12 | 20 | 3 | 6 | - | 9 | 29 |
| Summer <br> (May Oct.) | Dry | 4 | 1 | 5 | 10 | 1 | - | - | 1 | 11 |
|  | Inclement | 1 | - | 1 | 2 | - | - | - | - | 2 |
|  | Total | 5 | 1 | 6 | 12 | 1 | - | - | 1 | 13 |
| Total |  | 11 | 3 | 18 | 32 | 4 | 6 | - | 10 | 42 |
| Crashes/Mile |  | 7.0 | 1.9 | 11.5 | 20.4 | 2.5 | 3.8 | - | 6.4 | 26.8 |

## Crash Pattern Summary for Curves on Segment 7

As mentioned, Curves 7, 8, and 9 are within Segment 7 (see Figure 27). The tables in the appendix show the directionality of the predominant crash types (barrier, rear end and sideswipe crashes) on these curves. The seasonality and day of the week trends of the crashes on these curves are also shown in these tables. The following provides a summary of the trends shown in the tables in the appendix.

Curve 7 (MP 240.43 - MP 241.15 ) - During the study period, there were a total of 46 crashes on this curve, 35 eastbound and 11 westbound. The predominant crash type on this curve was rear end type crashes ( 24 of 46 ) which comprised 53 percent of the total. Of the rear end crashes 18 were eastbound and 6 were westbound. As was the trend for the entire segment, most of these rear end type crashes occurred in dry/daylight conditions. The eastbound crashes primarily occurred during the eastbound peak hour of travel around 3 PM in the afternoon, while most of the westbound crashes occurred in the morning during the westbound peak hour of travel. It should be noted that Curve 7 has a large downhill grade in the eastbound direction.

Curve 8 (MP 241.16 - MP 241.45 ) - During the study period, there were a total of 11 crashes on this curve, 6 eastbound and 5 westbound. The predominant crash types on this curve were rear end type crashes and fixed object type crashes with 4 of each crash type.

Curve 9 (MP 241.46 - MP 242.00) - During the study period, there were a total of 49 crashes on this curve, 27 eastbound and 22 westbound. The predominant crash type on this curve was fixed object (guard rail, barrier, embankment) type crashes (22 of 49) which comprised 46
percent of the total. Of the fixed object crashes 10 were eastbound and 12 were westbound. These crashes generally occurred during the winter in inclement road conditions.

## Segment 7 Mainline Recommendations

Consideration should be given to using highly reflective pavement markings and replacing all delineator post reflector buttons, rail reflector tabs and installing linear barrier delineation to provide better and consistent nighttime delineation throughout the corridor. In addition, consideration should be given to reviewing the existing lighting along the corridor to ensure that it is sufficient. Replacing damaged median barrier and guard rail should also be considered as the barrier and rails may not perform as designed when damaged. Due to the frequency of wild animal type crashes, consideration should be given to installing wildlife warning signs with flashing beacons along this segment in the westbound direction.

Lastly, the new pavement with this project should help to improve skid resistance along the corridor. Along with the reconstruction, "Safety Edge" methods should be used when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway in a controlled manner. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide. In addition, a copy of the "Safety Edge" pamphlet is provided in the Appendix.

## I-70 / SH 70K Interchange Ramp Crashes

During the study period, there were only a total of 4 crashes on the ramps or at the ramp terminals at this interchange. There was no predominant accident type at this location. A fixed object type crash occurred at the eastbound ramp gore point.

Due to the low number of crashes, no recommendations have been made for the ramps at this interchange.

## CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations of this study are based on the analysis of five years of crash history and a review of video data by Felsburg Holt \& Ullevig staff. The Region is advised to verify through field survey, the information included in this report regarding physical features, roadside characteristics and traffic control devices within the study area.

Based on the Weighted Accident Concentration (WAC) analysis, there are several locations along the study segment with higher than expected crash concentration and severity that are primarily related to barrier type crashes (concrete barrier, guard rail, and embankment) and rear end type crashes. The worst location (see Figure 2) is in the vicinity of the Empire Junction interchange in Curve 1.

There were 780 crashes reported within the study segment between January 1, 2008 and December 31, 2012. The most predominant crash types were fixed object type crashes (concrete barrier, guard rail, embankment and walls), rear end type crashes, and sideswipe same direction type crashes. These crash types comprise approximately 82 percent of the crashes along the corridor. In general, there are several factors that contribute to the cause of crashes along the study corridor. Some of the primary factors include; the horizontal curvature of I-70, travel speed, traffic congestion due to weekend traffic, direction of travel and inclement weather / road conditions. For many of the crashes, more than one of these factors contributed.

The study corridor was divided into seven analysis segments, one for each of the interchanges along the study segment. These seven segments were then divided into sub segments that generally correspond to each of the curves along the study corridor. In all, there are a total of nine curves along the study corridor; one in Segment 1, one in Segment 2, one in Segment 3, two in Segment 4, one in Segment 6, and three in Segment 7.

Based on the analyses of these segments and sub segments, it was found that the fixed object crashes typically occurred on a winter weekday when higher travel speeds and / or poor road conditions were common factors. The curves with the highest fixed object crash totals were Curves $2,5,6$, and 9 . These barrier type crashes occurred more frequently in the westbound direction.

Rear end type and sideswipe same direction type crashes typically occurred on winter weekends when traffic congestion is more likely. At some locations, the horizontal curvature of the roadway made rear end accidents more frequent due to the inability for vehicles to see stopped traffic ahead. This could be seen in Curves 1, 3, 4, and 7. These rear end and sideswipe type crashes occurred more frequently in the eastbound direction because this direction experiences higher traffic congestion.

The following list of recommendations was developed based on a review of the crash reports and the prevalent crash patterns along l-70.

In addition to the reconstruction and restriping of the pavement with highly reflective materials in conjunction with the peak period shoulder lane, the following recommendations are made to help reduce the number of mainline crashes along I-70.

- Consideration should also be given replacing all delineator post reflector buttons, rail reflector tabs and installing linear barrier delineation to provide better and consistent nighttime delineation throughout the corridor
- Consider replacing damaged median barrier and guard rail as the barrier and rails may not perform as designed when damaged.
- Along with the reconstruction, "Safety Edge" methods should be used when paving the shoulders where the guardrail is not against the paved shoulder to help make it easier for vehicles to reenter the roadway in a controlled manner. "Safety Edge" can be found in Chapter 4 of the CDOT Roadway Design Guide.
- Consider installing rumble strips along the westbound shoulder which could help to reduce the number of run-off-the-road crashes along the corridor.
- Finally, the construction of an eastbound peak period shoulder lane should help to reduce congestion and will likely help to reduce the number of rear end type crashes occurring in the eastbound direction.

In addition to corridor wide mainline crashes, there are several other locations of higher than expected crash concentration and severity throughout the study corridor. The following recommendations are made with respect to these locations:

## Segment 1 - US 40, Empire Junction Interchange (MP 230.00 - MP 233.11)

- Due to the frequency of wildlife type crashes, consideration should be given to installing wildlife warning signs with flashing beacons in the westbound direction.
- Consideration should be given to adding additional signing to the eastbound to northbound loop ramp to warn drivers of the sharp curve. Or consider installing dynamic speed monitoring displays (DSMD) to inform drivers of excessive speeds and encourage them to slow down.
- Consider clearing some of the bushes off the right side of the eastbound I-70 to northbound US 40 ramp to make the sharp curve ahead more visible to drivers.
- Consider adding signing warning of congestion ahead before MP 232.0 in the eastbound direction.
- On Curve 1, consideration should be given to installing dynamic speed monitoring displays (DSMD) to inform drivers of excessive speeds and encourage them to slow down.
- On Curve 1, consideration should be given to installing variable speed limit signs (VSL) and adjusting the speed limits based on road and weather conditions.


## Segment 7 - SH 70K Interchange (MP 240.43 - MP 242.00)

- Due to the frequency of wildlife type crashes, consideration should be given to installing wildlife warning signs with flashing beacons in the westbound direction.


## APPENDIX

## CRASH PATTERN TABLES

## FIVE-YEAR DETAILED SUMMARY OF TRAFFIC CRASHES

FIVE-YEAR GENERAL SUMMARY OF TRAFFIC CRASHES
> Segment 1 - US 40, Empire Junction Interchange (MP 230.00 - MP 233.11)
> Segment 2 - Downieville Interchange (MP 233.12 - MP 234.69)
$>$ Segment 3 - Dumont Interchange (MP 234.70 - MP 236.41)
> Segment 4 - Fall River Road Interchange (MP 236.42 - MP 238.33)
$>$ Segment 5 - SH 70K Interchange (MP 238.34 - MP 239.31)
$>$ Segment 6 - SH 103 Interchange (MP 239.32 - MP 240.42)
> Segment 7 - SH 70K Interchange (MP 240.43 - MP 242.00)
GENERAL SUMMARY OF TRAFFIC CRASHES BY YEAR
> $1 / 1 / 2008-12 / 31 / 2008$
> 1/1/2009-12/31/2009
> 1/1/2010-12/31/2010
> 1/1/2011-12/31/2011
> 1/1/2012-12/31/2012
COMMON CRASH TYPES AND DIAGRAMS

SAFETY EDGE BROCHURE

STRAIGHT-LINE-DIAGRAM
FIVE-YEAR CRASH LISTING

Seasonality and Day of the Week of Predominant Crash Types (EB I-70)

| Segment | Location | Season | Guardrail / Concrete Barrier / |  |  |  | Rear End |  |  |  | Sideswipe same direction |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Weekday } \\ \text { (M-F) } \end{gathered}$ | Saturday | Sunday | Total | $\begin{gathered} \text { Weekday } \\ \text { (M-F) } \end{gathered}$ | Saturday | Sunday | Total | $\begin{gathered} \text { Weekday } \\ \text { (M-F) } \end{gathered}$ | Saturday | Sunday | Total |
| Segment 1 | Curve 1 | Winter (Nov. - Apr.) | - | - | 1 | 1 | 13 | 5 | 8 | 26 | - | 1 | - | 1 |
|  | (MP 231.70-MP 232.20) | Summer (May - Oct.) | - | - | - | 0 | - | - | 2 | 2 | 1 | 1 | - | 2 |
| Segment 2 | Curve 2 | Winter (Nov. - Apr.) | 1 | - | 2 | 3 | 2 | - | 1 | 3 | - | - | - | 0 |
|  | (MP 233.25-MP 233.55) | Summer (May - Oct.) | - | - | - | 0 | - | - | 1 | 1 | 1 | - | - | 1 |
| Segment 3 | Curve 3 | Winter (Nov. - Apr.) | - | - | - | 0 | 1 | - | 1 | 2 | 2 | 2 | - | 4 |
|  | (MP 234.90-MP 235.10) | Summer (May - Oct.) | 1 | 1 | - | 2 | 1 | 1 | 2 | 4 | - | - | 1 | 1 |
| Segment 4 | Curve 4 | Winter (Nov. - Apr.) | 1 | - | - | 1 | - | 1 | - | 1 | 1 | - | - | 1 |
|  | (MP 237.05-MP 237.25) | Summer (May - Oct.) | - | - | - | 0 | - | - | 1 | 1 | - | - | 1 | 1 |
|  | Curve 5 | Winter (Nov. - Apr.) | 6 | 3 | - | 9 | 1 | - | - | 1 | 2 | 1 | - | 3 |
|  | (MP 237.25-MP 237.55) | Summer (May - Oct.) | - | - | - | 0 | - | 1 | 1 | 2 | - | - | - | 0 |
| Segment 6 | Curve 6 | Winter (Nov. - Apr.) | 9 | 1 | - | 10 | - | 1 | 1 | 2 | 1 | - | - | 1 |
|  | (MP 239.90-MP 240.25) | Summer (May - Oct.) | 3 | 1 | - | 4 | 3 | 1 | 1 | 5 | 2 | - | - | 2 |
| Segment 7 | Curve 7 | Winter (Nov. - Apr.) | 2 | 1 | - | 3 | 3 | - | 9 | 12 | 1 | 2 | - | 3 |
|  | (MP 240.43-MP 241.15) | Summer (May - Oct.) | - | - | 2 | 2 | 1 | 1 | 4 | 6 | 1 | - | - | 1 |
|  | Curve 8 | Winter (Nov. - Apr.) | 1 | - | - | 1 | - | - | - | 0 | 2 | - | - | 2 |
|  | (MP 241.16-MP 241.45) | Summer (May - Oct.) | - | - | - | 0 | 1 | - | 1 | 2 | - | - | - | 0 |
|  | Curve 9 | Winter (Nov. - Apr.) | 5 | 2 | 2 | 9 | 3 | 2 | 3 | 8 | - | 1 | - | 1 |
|  | (MP 241.46-MP 242.00) | Summer (May - Oct.) | - | - | - | 0 | 3 | - | 1 | 4 | 2 | - | - | 2 |
| Total |  | Winter (Nov. - Apr.) | 25 | 7 | 5 | 37 | 23 | 9 | 23 | 55 | 9 | 7 | 0 | 16 |
|  |  | Summer (May - Oct.) | 4 | 2 | 2 | 8 | 9 | 4 | 14 | 27 | 7 | 1 | 2 | 10 |

Directionality of Predominant Crash Types

| Segment | Location | Guardrail / Concrete Barrier / Embankment / Cable Rail |  |  | Rear End |  |  | Sideswipe same direction |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | EB | WB | Total | EB | WB | Total | EB | WB | Total |
| Segment 1 | Curve 1 <br> (MP 231.70-MP 232.20) | 1 | 7 | 8 | 28 | 2 | 30 | 3 | 1 | 4 |
| Segment 2 | Curve 2 <br> (MP 233.25-MP 233.55) | 3 | 7 | 10 | 4 | 2 | 6 | 1 | 1 | 2 |
| Segment 3 | Curve 3 <br> (MP 234.90-MP 235.10) | 2 | 3 | 5 | 6 | 8 | 14 | 5 | - | 5 |
| Segment 4 | Curve 4 (MP 237.05 - MP 237.25) | 1 | 3 | 4 | 2 | 8 | 10 | 2 | 1 | 3 |
|  | Curve 5 (MP 237.25 - MP 237.55) | 9 | 3 | 12 | 3 | 1 | 4 | 3 | - | 3 |
| Segment 6 | Curve 6 <br> (MP 239.90-MP 240.25) | 14 | 10 | 24 | 7 | 4 | 11 | 3 | 1 | 4 |
| Segment 7 | Curve 7 <br> (MP 240.43-MP 241.15) | 5 | 2 | 7 | 18 | 6 | 24 | 4 | - | 4 |
|  | Curve 8 <br> (MP 241.16-MP 241.45) | 1 | 2 | 3 | 2 | 2 | 4 | 2 | - | 2 |
|  | Curve 9 <br> (MP 241.46-MP 242.00) | 9 | 12 | 21 | 12 | 2 | 14 | 3 | - | 3 |
| Total |  | 45 | 49 | 94 | 82 | 35 | 117 | 26 | 4 | 30 |

Begin:230.00 End:242.00 From:01/01/2008 To:12/31/2012

| Severity |  |  |
| ---: | ---: | :---: |
| PDO: | 733 |  |
| INJ: | 45 | 61 :Injured |
| FAT: | 2 | 2 :Killed |
| Total: | $\mathbf{7 8 0}$ |  |
|  |  |  |


| Multi-Vehicle |  | Location |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| One Vehicle: | 378 | On Road: | 441 | in Median: | 0 |
| Two Vehicles: | 313 | Off Road Left: | 167 | Property: | 0 |
| Three or More: | 89 | Off Road Right: | 172 | Unknown: | 0 |
| Unknown: | 0 | Off Road at Tee: | 0 | Total: | 780 |
| Total: | 780 |  |  |  |  |



| - Vehicle Types | Veh 1-_Veh 2 |  | eh 3 | Direction | Veh 1 | Veh 2 __Veh 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vehicle/Vehicle Combo (> 10k Lbs): | 22 | 18 | 3 | North: | 2 | 0 | 0 |
| School Bus (All School Busses): | 1 | 0 | 0 | Northeast: | 0 | 0 | 0 |
| Non-School Bus (>8) in Commerce: | 1 | 1 | 0 | East: | 421 | 264 | 66 |
| Transit Bus: | 0 | 0 | 0 | Southeast: | 0 | 0 | 0 |
| Passenger Car/Van: | 309 | 145 | 29 | South: | 3 | 5 | 0 |
| Passenger Car/Van w/Trailer: | 1 | 0 | 0 | Southwest: | 0 | 0 | 0 |
| Pickup Truck/Utility Van: | 151 | 69 | 16 | West: | 354 | 133 | 22 |
| Pickup Truck/Utility Van w/Trailer: | 11 | 5 | 0 | Northwest: | 0 | 0 | 0 |
| SUV: | 268 | 153 | 38 | Unknown: | 0 | 0 | 1 |
| SUV w/Trailer: | 2 | 4 | 0 | Total: | 780 | 402 | 89 |
| Motor Home: | 2 | 1 | 0 |  |  |  |  |
| Motorcycle: | 5 | 1 | 0 |  |  |  |  |
| Bicycle: | 0 | 0 | 0 |  |  |  |  |
| Motorized Bicycle: | 0 | 1 | 0 |  |  |  |  |
| Farm Equipment: | 0 | 0 | 0 |  |  |  |  |
| Hit and Run - Unknown: | 6 | 3 | 1 |  |  |  |  |
| Light Rail: | 0 | 0 | 0 |  |  |  |  |
| Other: | 1 | 1 | 1 |  |  |  |  |
| Unknown: | 0 | 0 | 1 |  |  |  |  |
| Commercial Vehicle Total: | 780 | 402 | 89 |  |  |  |  |


| [Contributing Factor_- Veh 1 __ Veh 2 _ Veh 3 [ [ Vehicle Movement__ Veh 1 _ Veh 2 - Veh 3 - |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No Apparent Contributing Factor: | 476 | 392 | 85 | Going Straight: | 416 | 119 | 8 |
| Asleep at the Wheel: | 19 | 0 | 0 | Slowing: | 59 | 156 | 31 |
| Driver Fatigue: | 10 | 0 | 0 | Stopped in Traffic: | 5 | 91 | 46 |
| Illness/Medical: | 9 | 0 | 0 | Making Right Turn: | 7 | 1 | 0 |
| Driver Inexperience: | 62 | 0 | 0 | Making Left Turn: | 7 | 0 | 0 |
| Agressive Driving: | 39 | 6 | 2 | Making U-Turn: | 0 | 0 | 0 |
| Driver Unfamilar with Area: | 75 | 3 | 1 | Passing: | 16 | 2 | 0 |
| Driver Emotionally Upset: | 1 | 0 | 0 | Backing: | 4 | 0 | 0 |
| Evading Law Enforcement Officier: | 3 | 0 | 0 | Enter/Leave Parked Pos: | 3 | 0 | 1 |
| Physical Disability: | 0 | 0 | 0 | Parked: | 0 | 8 | 1 |
| DUI, DWAI, DUID: | 27 | 0 | 0 | Changing Lanes: | 44 | 7 | 0 |
| Distracted/Passenger: | 3 | 0 | 0 | Avoiding Object in Road: | 12 | 12 | 1 |
| Distracted/Cell Phone: | 3 | 0 | 0 | Weaving: | 13 | 0 | 0 |
| Distracted/Radio: | 1 | 0 | 0 | Spun Out of Control: | 187 | 3 | 0 |
| Distracted/Other: | 22 | 0 | 0 | Drove Wrong Way: | 2 | 0 | 0 |
| Other Factor: | 30 | 1 | 1 | Other: | 5 | 3 | 0 |
| Unknown: | 0 | 0 | 0 | Unknown: | 0 | 0 | 1 |
| Total: | 780 | 402 | 89 | Total: | 780 | 402 | 89 |
| — Driver Condition (Alcohol)__ Veh 1 _- Veh 2 _ Veh 3 _ _ Driver Condition (Drugs)— Veh 1 _— Veh 2 - Veh 3 - |  |  |  |  |  |  |  |
| No Alcohol Suspected: | 728 | 395 | 84 | No Drugs Suspected: | 741 | 395 | 49 |
| Alcohol Suspected: | 28 | 0 | 0 | Drugs Suspected: | 11 | 0 | 0 |
| Unknown Alcohol: | 24 | 7 | 5 | Unknown Drugs: | 28 | 7 | 40 |
| Alcohol Sub-Total: | 780 | 402 | 89 | Drugs Sub-Total: | 780 | 402 | 89 |

## Highway: 70A

Begin:230.00 End:233.11 From:01/01/2008 To:12/31/2012

| Severity |  |  | Number of Vehi |  | Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 200 | 8:Injured <br> 1 :Killed | One Vehicle: | 96 | On Road: | 131 |
| INJ: | 7 |  | Two Vehicles: | 78 | Off Road: | 77 |
| FAT: | 1 |  | Three or More: | 34 | Unknown: | 0 |
| Total: | 208 |  | Unknown: | 0 | Total: | 208 |
|  |  |  | Total: |  |  |  |

## _ Accident Type



Begin:233.12 End:234.69 From:01/01/2008 To:12/31/2012

| Severity |  |  | - Number of Vehicles |  | - Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 102 | $11:$ Injured$0:$ Killed | One Vehicle: | 52 | On Road: | 61 |
| INJ: | 6 |  | Two Vehicles: | 49 | Off Road: | 47 |
| FAT: | 0 |  | Three or More: | 7 | Unknown: | 0 |
| Total: | 108 |  | Unknown: | 0 | Total: | 108 |
|  |  |  | Total: |  |  |  |

## — Accident Type



Begin:234.70 End:236.41 From:01/01/2008 To:12/31/2012

| Severity |  |  | - Number of Vehicles |  | -Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 98 | 11 :Injured $0:$ Killed | One Vehicle: | 37 | On Road: | 76 |
| INJ: | 9 |  | Two Vehicles: | 59 | Off Road: | 31 |
| FAT: | 0 |  | Three or More: | 11 | Unknown: | 0 |
| Total: | 107 |  | Unknown: | 0 | Total: | 107 |
|  |  |  | Total: |  |  |  |

## — Accident Type



Begin:236.42 End:238.33 From:01/01/2008 To:12/31/2012

| , |  |  | - Number of Vehicles |  | Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 108 | 11 :Injured | One Vehicle: | 56 | On Road: | 59 |
| INJ: | 11 |  | Two Vehicles: | 50 | Off Road: | 61 |
| FAT: | 1 |  | Three or More: | 14 | Unknown: | 0 |
| Total: | 120 |  | Unknown: | 0 | Total: | 120 |
|  |  |  | Total: |  |  |  |

## _ Accident Type



| Severity |  |  | Number of Vehicles |  | Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 39 | 1 :Injured <br> $0:$ Killed | One Vehicle: | 29 | On Road: | 10 |
| INJ: | 1 |  | Two Vehicles: | 10 | Off Road: | 30 |
| FAT: | 0 |  | Three or More: | 1 | Unknown: | 0 |
| Total: |  |  | Unknown: | 0 | Total: | 40 |
|  |  |  | Total: |  |  |  |

## —Accident Type

| Overturning: | 2 | Sideswipe (Same): | 0 | Bicycles: | 0 |
| ---: | :--- | ---: | ---: | ---: | ---: |
| Other Non Collision: | 0 | Sideswipe (Opposite): | 0 | Domestic Animal: | 0 |
| Pedestrians: | 0 | Approach Turn: | 0 | Wild Animal: | 1 |
| Broadside: | 0 | Overtaking Turn: | 0 | Fixed Objects: | 28 |
| Head On: | 0 | Parked Motor Vehicle: | 0 | Other Objects: | 1 |
| Rear End: | 8 | Railway Vehicle: | 0 | Unknown: | 0 |
|  |  |  | Total: | 40 |  |



## Highway: 70A

Begin:239.32 End:240.42 From:01/01/2008 To:12/31/2012

| Severity |  |  | - Number of Vehicles |  | - Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 78 | 17:Injured 0 :Killed | One Vehicle: | 56 | On Road: | 35 |
| INJ: | 9 |  | Two Vehicles: | 24 | Off Road: | 52 |
| FAT: | 0 |  | Three or More: | 7 | Unknown: | 0 |
| Total: |  |  | Unknown: | 0 | Total: | 87 |
|  |  |  | Total: |  |  |  |



Begin:240.43 End:242.00 From:01/01/2008 To:12/31/2012

## Highway: 70A

| Severity |  |  | Number of Vehicles |  | -Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 108 | 2:Injured <br> $0:$ Killed | One Vehicle: | 52 | On Road: | 69 |
| INJ: | 2 |  | Two Vehicles: | 43 | Off Road: | 41 |
| FAT: | 0 |  | Three or More: | 15 | Unknown: | 0 |
| Total: | 110 |  | Unknown: | 0 | Total: | 110 |
|  |  |  | Total: |  |  |  |

## — Accident Type



|  |  |  | - Number of Vehicles |  | -Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 173 | 12:Injured <br> 1 :Killed | One Vehicle: | 85 | On Road: | 103 |
| INJ: | 9 |  | Two Vehicles: | 74 | Off Road: | 80 |
| FAT: | 1 |  | Three or More: | 24 | Unknown: | 0 |
| Total: | 183 |  | Unknown: | 0 | Total: | 183 |
|  |  |  | Total: |  |  |  |

## Accident Type



| Highway: | 70A |  | Begin:230.00 | End:242.00 | From:01/01/2009 | To:12/31/2009 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - Severity |  | 16:Injured $0:$ Killed | Number of Vehicles  <br> One Vehicle: 78 <br> Two Vehicles: 60 <br> Three or More: 17 <br> Unknown: 0 <br> Total: $\mathbf{1 5 5}$ |  | Location |  |  |
| PDO: | 144 |  |  |  | Road: | 91 |
| INJ: | 11 |  |  |  | Road: | 64 |
| FAT: | 0 |  |  |  | nown: | 0 |
| Total: |  |  |  |  | Total: | 155 |
|  |  |  |  |  |  |  |



Begin:230.00 End:242.00 From:01/01/2010 To:12/31/2010

| , |  |  | - Number of Vehicles |  | Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 151 | 9:Injured <br> 1 :Killed | One Vehicle: | 73 | On Road: | 83 |
| INJ: | 8 |  | Two Vehicles: | 69 | Off Road: | 77 |
| FAT: | 1 |  | Three or More: | 18 | Unknown: | 0 |
| Total: | 160 |  | Unknown: | 0 | Total: | 160 |
|  |  |  | Total: |  |  |  |

## _ Accident Type



Begin:230.00 End:242.00 From:01/01/2011 To:12/31/2011

| Severity |  |  | - Number of Vehicles |  | - Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 143 | $11:$ Injured$0:$ Killed | One Vehicle: | 77 | On Road: | 83 |
| INJ: | 10 |  | Two Vehicles: | 58 | Off Road: | 70 |
| FAT: | 0 |  | Three or More: | 18 | Unknown: | 0 |
| Total: | 153 |  | Unknown: | 0 | Total: | 153 |
|  |  |  | Total: |  |  |  |

## —Accident Type



Begin:230.00 End:242.00 From:01/01/2012 To:12/31/2012

|  |  |  | - Number of Vehicles |  | -Location |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO: | 122 | 13:Injured 0 :Killed | One Vehicle: | 65 | On Road: | 81 |
| INJ: | 7 |  | Two Vehicles: | 52 | Off Road: | 48 |
| FAT: | 0 |  | Three or More: | 12 | Unknown: | 0 |
| Total: | 129 |  | Unknown: | 0 | Total: | 129 |
|  |  |  | Total: |  |  |  |

## _ Accident Type



## APPROACH TURN ACCIDENTS

## Definition:

Two vehicles traveling opposite direction are approaching each other and one vehicle unsafely turns in front of the oncoming vehicle resulting in a front to side collision.

Event Sequence Diagrams ${ }^{[2]}$ :


Figure FR-5: Front to Side

## Probable Causes:

Approach turn accidents at signalized intersections are typically attributable to:

1) Restricted Sight Distance
2) Excessive speed
3) Poor traffic control visibility
4) Inadequate advance intersection warning signs
5) Inadequate traffic signal cycles
6) Inadequate road design and/or maintenance

## BROADSIDE ACCIDENTS

## Definition ${ }^{[1]}$ :

Two vehicles approaching from non-opposing angular directions collide, typically resulting as one vehicle failed to either stop or yield right of way from a Stop or Yield sign, ran a red light, or was not cleared from the intersection upon the onset of the conflicting movement's green signal.

## Event Sequence Diagrams ${ }^{[2]}$ :



Figure FR-12A: Front to Side

## Probable Causes:

Broadside accidents at signalized intersections are typically attributable to:

1) Restricted sight distance
2) Excessive Speed on approaches
3) Poor visibility of signals
4) Inadequate signal timing
5) Inadequate roadway lighting
6) Inadequate advance intersection warning signs
7) Large total intersection volume

## HEAD-ON COLLISION ACCIDENTS

## Definition ${ }^{[1]:}$

Two vehicles approaching opposite directions and intending to continue in opposite directions collide in a frontal or angular manner as a result of one or both vehicles crossing the painted or unpainted centerline or divided median of the roadway. This includes a collision resulting from one vehicle traveling the wrong way down a divided highway.

## Event Sequence Diagrams ${ }^{[2]}$ :



Figure FR-6A: Front to Front


Figure FR-6B: Front to Rear


Figure FR-6C: Front to Side

## Probable Causes:

Head-on collision accidents are typically attributable to:

1) Inadequate road design and/or maintenance
2) Inadequate shoulders
3) Excessive vehicle speed
4) Inadequate pavement markings
5) Inadequate channelization
6) Inadequate signing
7) Aggressive driving behaviors

## OVERTAKING ACCIDENTS

## Definition ${ }^{[3]}$ :

Collisions occur when a vehicle tries to overtake another vehicle traveling in the same direction by overtaking when approaching or at a road junction on either side of the road, where the road narrows, when approaching a school crossing patrol, where traffic is queuing at junctions or in construction work zones. This forces another road user to swerve or slow down, at a level crossing, when a road user is indicating right.

Event Sequence Diagrams ${ }^{[2]}$ :


## Probable Causes:

Overtaking accidents at signalized intersections are typically attributable to:

1) Inadequate pavement markings
2) Inadequate signing
3) Inadequate road design and/or maintenance
4) Roadside features

## OVERTURNING ACCIDENTS

## Definition ${ }^{[1]}$

A crash in which a vehicle overturns on or off the roadway without first having been involved in some other type single or multiple vehicle crash. This includes motorcycle crashes in which the operator loses control of and drops the bike, but had not initially struck another motor vehicle, fixed or non-fixed object, animal, bicyclist or pedestrian.

## Event Sequence Diagrams ${ }^{[2]}$ :



Figure FR-7A: On Roadway


Figure FR-7A: Ran off left side

## Probable Causes:

Overturning accidents are typically attributable to:

1) Roadside features
2) Inadequate shoulder / recovery zone
3) Pavement features

## SIDESWIPE ACCIDENTS (OPPOSITE DIRECTION)

## Definition ${ }^{[1]:}$

Two vehicles approaching opposite directions and intending to continue in opposite directions collide in a sideswiping manner as a result of one or both vehicles crossing the painted or unpainted centerline or divided median of the roadway. This also includes a collision resulting from one vehicle traveling the wrong way down a divided highway.

Event Sequence Diagrams ${ }^{[2]}$ :


Figure FR-11A: Side to Side - Opposite Direction


Figure FR-11B: Side to Side - Opposite Direction

## Probable Causes:

Side swipe accidents are typically attributable to:

1) Inadequate road design and/or maintenance
2) Inadequate shoulders
3) Excessive vehicle speed
4) Inadequate pavement markings
5) Inadequate channelization
6) Inadequate signing

## SIDESWIPE ACCIDENTS (SAME DIRECTION)

## Definition ${ }^{[1]:}$

Two vehicles moving alongside each other and collide, with at least one of the vehicles being struck on the side. This type would include a collision resulting from one of the vehicles making an improper turn such as a left from the right lane or vice-versa or turning right from the appropriate outside lane and striking a vehicle passing on the right shoulder.

## Event Sequence Diagrams ${ }^{[2]}$ :



Figure FR-10A: Side to Side - Same Direction


Figure FR-10B: Side to Side - Same Direction

## Probable Causes:

Side swipe accidents are typically attributable to:

1) Inadequate road design and/or maintenance
2) Inadequate shoulders
3) Excessive vehicle speed
4) Inadequate pavement markings
5) Inadequate channelization
6) Inadequate signing

## REAR END ACCIDENTS

## Definition ${ }^{[1]}$ :

Two vehicles in a position of one behind the other and collide, regardless of what movement(s) either vehicle was in the process of making with the exception of one or both vehicles backing. This type includes a collision in which the leading vehicle spun out and became turned 180 degrees around such that the resulting same direction collision had it strike front end to front end with the following vehicle.

## Event Sequence Diagrams ${ }^{[2]}$ :



Figure FR-9A: Front to Front


Figure FR-9B: Front to Rear


Figure FR-9C: Front to Side
Rear-End accidents at signalized intersections are typically attributable to:

1) Slippery road surface
2) Large turning volume
3) Poor Visibility of signals
4) Inadequate signal timing
5) Unwarranted signal
6) Inadequate roadway lighting
7) Excessive speed on approaches
8) Crossing pedestrians
9) Uncontrolled access at intersection
10) Short turning radius
11) Inadequate directional signing

Rear-End accidents at un-signalized intersections are typically attributable to:

1) Drivers unaware of intersection
2) Slippery road surface
3) Large turning volume
4) Inadequate roadway lighting
5) Excessive speed on approaches
6) Lack of adequate gaps for turning vehicles
7) Absence of turning lanes
8) Crossing pedestrians
9) Uncontrolled access at intersection
10) Short turning radius
11) Inadequate directional signing
PAVEMENT EDGE TREATMENT SOAH SOMDS
Reduces Tort Liability asuadxョ әэириәұи！ Costs Less than 1 Percent of 106png бuppynnsay ұuauanod Safe Roads for a Safer future

## Contact the FHWA for More Information

 about the Safety Edge and other Roadway Departure Crash Countermeasures For more information about Roadway Departure issues and effective countermeasures to prevent Roadway Departure crashes，go to the FHWA Office of Safety＇s Web site at http：／／safety．fhwa．dot．gov／and click on＂Road Departure．＂FHWA contacts for technical assistance with the Safety Edge are listed below．CONTACTS

 шеәュ иб！sәa pue Кдәృе
（404）562－3689
Frank．Julian＠dot．go

шеә」 s｜епәәеш рие диәшәля ع69ع－z9s（tot）

Christopher．Wagner＠dot．gov


（202） $366-0087$

 AAA Foundation for Highway Safety，Washington，DC，

 September 2006.

## Relative Safety of Various Edge

## Elevations and Shapes

The chart below shows how various edge shapes
relate to safety at speeds of up to 70 mph ．


The Safety Wedge Shoe is a special edging device that asphalt paving contractors can install on new or existing resurfacing equipment to shape the Safety Edge．

Routinely resurface shoulders when roadways are resurfaced，and add the Safety Edge． әбрә и！еұи！еш он ш！е sә！̣иәбе Кемцб！ч Киеш ■ dropoff depths at 2 ＂or less on high－speed highways．

 the graded shoulder．The additional cost of the
 resurfacing projects．Benefits include the avoided economic and social impacts of fatalities，injuries， and property damage．

The placement of the asphalt wedge during resurfacing operations mitigates the hazard posed
 down the asphalt mat，allowing the highway agency reasonable time to restore the shoulder．


## Pavement Edges Can Pose

Serious Safety Hazards

## 8S dof zunoכコe sayseג（yOy）peod－ə丩t－fo－uny

 percent of highway fatalities．While national data documenting the role of pavement edge configuration in the sequence of events leading to crashes are not AAA Foundation for Highway Safety point to the life－saving potential of safety edges．For example， researchers studying crashes in lowa during 2002－

 crashes，and crashes caused by pavement dropoffs resulted in fatalities more often than other types of ROR crashes．＇

## How Hazardous Pavement Edges

A vehicle that has departed a paved surface can have difficulty re－entering the roadway if the pavement edge is vertical－especially if the edge of the pavement is significantly higher than 2＂above the shoulder．When a driver drifts onto the roadway shoulder and tries to steer back onto the pavement，the vertical pavement edge can create a＂tire scrubbing＂ condition that may result in over－steering． If drivers over－steer to
 Sharp，steep pavement edge dropoffs can contribute to crashes．
return to the roadway without reducing speed，they are prone to lose control of the vehicle．The vehicle may veer into the adjacent lane，where it may collide with，or sideswipe oncoming cars；overturn；or run off the opposite side of the road and crash．

 edge safety is to adopt a standard specification for
 angle＂Safety Edge＂that interfaces with the graded shoulder．

## Solutions to the Pavement Edge

 Drop－off Hazard－Require a $30^{\circ}-35^{\circ}$ angle asphalt wedge＂Safety Edge＂at the graded shoulder interface in asphalt resurfacing projects．

## Route 070A From 230 To 242




It may appear that information is missing from the straight line diagram. If so, reduce the number of miles/page and re-submit the request.
Route 070A
From 232 To 234



Route 070A
From 236 To 238
$\diamond_{\text {Ramps }}$
$\frac{1}{1}$ Overpass
$-1-$ Underpass


CLASSIFICATION



SAFETY


```
Moute 070A
\Ramps
I
-|- Underpass
CLASSIFICATION
```




## SAFETY




It may appear that information is missing from the straight line diagram. If so, reduce the number of miles/page and re-submit the request.

| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 070A | 230.00 | 9/15/2012 | 2015 | PDO | 12517494 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 2 | 070A | 230.00 | 11/23/2009 | 0515 | PDO | 09318571 | OFF LEFT | NON-INTERSECTION | 3 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 3 | 070A | 230.00 | 3/29/2011 | 0525 | PDO | 11305490 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 4 | 070A | 230.00 | 12/23/2009 | 1650 | PDO | 09327348 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 5 | 070A | 230.10 | 12/22/2009 | 0915 | PDO | 09322977 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 6 | 070A | 230.10 | 7/7/2008 | 2315 | PDO | 08312178 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 7 | 070A | 230.10 | 1/17/2011 | 2020 | PDO | 11301519 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 8 | 070A | 230.10 | 12/31/2011 | 0745 | PDO | 11513693 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY W/VIS ICY ROAD TREATMENT | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 9 | 070A | 230.20 | 11/27/2010 | 1909 | PDO | 10315563 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 10 | 070A | 230.24 | 5/1/2011 | 1133 | PDO | 11307286 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 11 | 070A | 230.30 | 2/1/2009 | 1745 | PDO | 09329422 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 12 | 070A | 230.30 | 4/1/2008 | 1658 | PDO | 08311501 | OFF LEFT | NON-INTERSECTION |  | DRY | DAYLIGHT | NONE | N |
| 13 | 070A | 230.30 | 11/28/2011 | 1115 | PDO | 11510156 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 14 | 070A | 230.40 | 4/9/2009 | 1354 | PDO | 09327716 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 15 | 070A | 230.40 | 7/6/2010 | 1035 | PDO | 10306360 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 16 | 070A | 230.50 | 1/29/2010 | 0635 | PDO | 10325716 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 17 | 070A | 230.50 | 11/29/2008 | 0920 | PDO | 08300791 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 18 | 070A | 230.60 | 12/19/2008 | 1637 | PDO | 08303102 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 19 | 070A | 230.60 | 6/26/2011 | 1640 | PDO | 11313334 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 20 | 070A | 230.60 | 3/17/2008 | 0855 | PDO | 08308224 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | NONE | N |
| 21 | 070A | 230.70 | 7/13/2008 | 1644 | PDO | 08303791 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 22 | 070A | 230.80 | 2/24/2008 | 1435 | PDO | 08312363 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 23 | 070A | 230.90 | 2/24/2008 | 1515 | PDO | 08312364 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 24 | 070A | 230.90 | 12/7/2008 | 1530 | PDO | 08329370 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 25 | 070A | 230.90 | 1/4/2009 | 1330 | PDO | 09301370 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 26 | 070A | 230.90 | 7/25/2010 | 1545 | PDO | 10310981 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 27 | 070A | 230.90 | 3/10/2011 | 0935 | PDO | 11312608 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 28 | 070A | 230.90 | 6/19/2012 | 2200 | PDO | 12511400 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 29 | 070A | 230.90 | 11/9/2009 | 1437 | PDO | 09323049 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 30 | 070A | 230.90 | 12/7/2008 | 1525 | PDO | 08301341 | OFF LEFT | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 31 | 070A | 231.00 | 8/10/2011 | 1000 | INJ | 11500693 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 32 | 070A | 231.00 | 1/1/2011 | 0615 | PDO | 11300013 | OFF RIGHT | NON-INTERSECTION | 1 | DRY W/VIS ICY ROAD TREATMENT | DARK-UNLIGHTED | WIND | N |
| 33 | 070A | 231.00 | 8/5/2012 | 1622 | PDO | 12514639 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 34 | 070A | 231.00 | 8/9/2009 | 1943 | PDO | 09310575 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 35 | 070A | 231.00 | 6/5/2010 | 1802 | PDO | 10305574 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 36 | 070A | 231.00 | 8/23/2011 | 1100 | PDO | 11513475 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 37 | 070A | 231.00 | 6/15/2012 | 1500 | PDO | 12511625 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 38 | 070A | 231.00 | 12/1/2008 | 1520 | PDO | 08310634 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | WIND | N |
| 39 | 070A | 231.10 | 9/28/2008 | 1920 | PDO | 08306493 | ON | NON-INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | N |
| 40 | 070A | 231.10 | 12/22/2010 | 1620 | PDO | 10317616 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 41 | 070A | 231.10 | 4/22/2008 | 1307 | PDO | 08315252 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 42 | 070A | 231.10 | 5/26/2012 | 1840 | PDO | 12509599 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 43 | 070A | 231.10 | 12/9/2012 | 0810 | PDO | 12523961 | OFF RIGHT | RAMP | 1 | ICY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{D})$ |
| 44 | 070A | 231.14 | 4/10/2009 | 1330 | PDO | 09315468 | ON | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{E})$ |
| 45 | 070A | 231.15 | 9/12/2010 | 0730 | PDO | 10312377 | OFF RIGHT | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{E})$ |
| 46 | 070A | 231.20 | 4/1/2008 | 0220 | FAT | 08330799 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 47 | 070A | 231.20 | 6/24/2012 | 1445 | PDO | 12512649 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 48 | 070A | 231.20 | 10/12/2008 | 0900 | PDO | 08317233 | ON | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 49 | 070A | 231.20 | 4/1/2008 | 0220 | PDO | 08316502 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 50 | 070A | 231.20 | 4/1/2008 | 0220 | PDO | 08316503 | ON | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 51 | 070A | 231.30 | 4/11/2008 | 1808 | PDO | 08305831 | OFF RIGHT | NON-INTERSECTION | 1 | SLUSHY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 52 | 070A | 231.30 | 2/22/2010 | 0915 | PDO | 10324949 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 53 | 070A | 231.30 | 1/13/2008 | 1555 | PDO | 08308527 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 54 | 070A | 231.30 | 2/14/2010 | 1430 | PDO | 10300955 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | NONE | N |
| 55 | 070A | 231.30 | 4/25/2011 | 0545 | PDO | 11307078 | ON | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | NONE | N |
| 56 | 070A | 231.30 | 11/19/2012 | 1324 | PDO | 12522355 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 62 | GOING STRAIGHT |
| 2 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 3 | GUARD RAIL | W | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 50 | GOING STRAIGHT |
| 4 | EMBANKMENT | E | SUV | DISTRACTED/OTHER | 65 | GOING STRAIGHT |
| 5 | SIDESWIPE (SAME DIRECTION) | W | PICKUP TRUCK/UTILITY VAN | OTHER FACTOR | 65 | WEAVING |
| 6 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 7 | EMBANKMENT | W | PICKUP TRUCK/UTILITY VAN | DRIVER INEXPERIENCE | 55 | SPUN OUT OF CONTROL |
| 8 | EMBANKMENT | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 50 | SLOWING |
| 9 | REAR END | E | SUV | DRIVER UNFAMILIAR W/AREA | 40 | SLOWING |
| 10 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 11 | REAR END | E | SUV | NONE APPARENT | 20 | GOING STRAIGHT |
| 12 | CABLE RAIL | E | SUV | ASLEEP AT THE WHEEL | 60 | GOING STRAIGHT |
| 13 | CABLE RAIL | E | PASSENGER CAR/VAN | ASLEEP AT THE WHEEL | 65 | SPUN OUT OF CONTROL |
| 14 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 65 | SPUN OUT OF CONTROL |
| 15 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER FATIGUE | 75 | GOING STRAIGHT |
| 16 | SIDESWIPE (SAME DIRECTION) | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 5 | MAKING LEFT TURN |
| 17 | EMBANKMENT | W | SUV | NONE APPARENT | 40 | SPUN OUT OF CONTROL |
| 18 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 15 | SLOWING |
| 19 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 20 | GUARD RAIL | E | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 21 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 22 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 23 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 25 | GOING STRAIGHT |
| 24 | REAR END | E | SUV | DISTRACTED/OTHER | 50 | GOING STRAIGHT |
| 25 | REAREND | E | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 20 | GOING STRAIGHT |
| 26 | REAR END | E | PASSENGER CAR/VAN | DISTRACTED/OTHER | 30 | GOING STRAIGHT |
| 27 | REAR END | W | SUV | OTHER FACTOR | 60 | SLOWING |
| 28 | WILD ANIMAL | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 29 | VEHICLE DEBRIS OR CARGO | E | PICKUP TRUCK/UTILITY VAN W/TRAILER | NONE APPARENT | 50 | GOING STRAIGHT |
| 30 | EMBANKMENT | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | SLOWING |
| 31 | OVERTURNING | W | PASSENGER CAR/VAN | OTHER FACTOR | 75 | SPUN OUT OF CONTROL |
| 32 | OTHER NON-COLLISION | E | VEH COMBO (10,001 LBS AND OVER) | DRIVER UNFAMILIAR W/AREA | 55 | SPUN OUT OF CONTROL |
| 33 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 34 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 70 | PASSING |
| 35 | SIDESWIPE (SAME DIRECTION) | E | SUV | DISTRACTED/OTHER | 65 | WEAVING |
| 36 | GUARD RAIL | E | PICKUP TRUCK/UTILITY VAN | DRIVER FATIGUE | 50 | GOING STRAIGHT |
| 37 | VEHICLE DEBRIS OR CARGO | E | MOTOR HOME | NONE APPARENT | 60 | GOING STRAIGHT |
| 38 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | AVOIDING OBJECT IN ROAD |
| 39 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 40 | REAR END | E | SUV | NONE APPARENT | 25 | GOING STRAIGHT |
| 41 | WILD ANIMAL | W | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 42 | WILD ANIMAL | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 50 | SLOWING |
| 43 | OVERTURNING | W | SUV | DRIVER UNFAMILIAR W/AREA | 45 | GOING STRAIGHT |
| 44 | WILD ANIMAL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 45 | EMBANKMENT | W | PASSENGER CAR/VAN | DUI, DWAI, DUID | 50 | SPUN OUT OF CONTROL |
| 46 | OVERTURNING | W | SUV | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 47 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | ASLEEP AT THE WHEEL | 15 | WEAVING |
| 48 | ROAD MAINTENANCE EQUIPMENT | W | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 49 | INVOLVING OTHER OBJECT | W | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 50 | INVOLVING OTHER OBJECT | W | PASSENGER CAR/VAN | NONE APPARENT | 40 | GOING STRAIGHT |
| 51 | OVERTURNING | W | SUV | DRIVER INEXPERIENCE | 65 | SPUN OUT OF CONTROL |
| 52 | OVERTURNING | W | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 53 | REAR END | E | PASSENGER CAR/VAN | ASLEEP AT THE WHEEL | 10 | GOING STRAIGHT |
| 54 | REAR END | E | SUV | NONE APPARENT | 25 | SLOWING |
| 55 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 40 | SPUN OUT OF CONTROL |
| 56 | REAR END | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 70 | GOING STRAIGHT |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 57 | 070A | 231.30 | 4/25/2011 | 0500 | PDO | 11306963 | ON | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | NONE | N |
| 58 | 070A | 231.30 | 8/26/2012 | 2345 | PDO | 12516457 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 59 | 070A | 231.40 | 7/12/2010 | 1450 | PDO | 10326849 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 60 | 070A | 231.40 | 1/15/2011 | 1730 | PDO | 11300621 | ON | NON-INTERSECTION | 3 | DRY | DAWN OR DUSK | WIND | N |
| 61 | 070A | 231.40 | 7/1/2012 | 1400 | PDO | 12512005 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 62 | 070A | 231.50 | 1/2/2008 | 1530 | PDO | 08308518 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 63 | 070A | 231.50 | 3/1/2008 | 1522 | PDO | 08312405 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 64 | 070A | 231.50 | 7/17/2011 | 1255 | PDO | 11311494 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 65 | 070A | 231.50 | 12/27/2012 | 1515 | PDO | 12525771 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 66 | 070A | 231.50 | 10/12/2008 | 0905 | PDO | 08330885 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 67 | 070A | 231.50 | 12/1/2008 | 1520 | PDO | 08303809 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 68 | 070A | 231.50 | 8/4/2008 | 1755 | PDO | 08308584 | ON | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 69 | 070A | 231.60 | 1/12/2008 | 1550 | PDO | 08312142 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 70 | 070A | 231.60 | 2/2/2008 | 1540 | PDO | 08312147 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 71 | 070A | 231.60 | 12/30/2009 | 1559 | PDO | 09327344 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | NONE | N |
| 72 | 070A | 231.60 | 12/26/2012 | 1550 | PDO | 12525776 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 73 | 070A | 231.60 | 9/10/2011 | 2250 | PDO | 11502407 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 74 | 070A | 231.60 | 7/4/2012 | 0545 | PDO | 12512209 | ON | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 75 | 070A | 231.60 | 3/19/2010 | 1955 | PDO | 10301899 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 76 | 070A | 231.60 | 11/11/2010 | 0215 | INJ | 10319795 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 77 | 070A | 231.60 | 3/2/2011 | 1330 | PDO | 11304114 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 78 | 070A | 231.60 | 4/26/2011 | 0515 | PDO | 11307031 | OFF LEFT | NON-INTERSECTION |  | ICY | DAYLIGHT | NONE | N |
| 79 | 070A | 231.70 | 12/6/2008 | 1800 | PDO | 08302599 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 80 | 070A | 231.70 | 2/27/2010 | 1600 | PDO | 10301804 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 81 | 070A | 231.70 | 12/23/2011 | 1550 | PDO | 11513060 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 82 | 070A | 231.70 | 12/23/2011 | 1615 | PDO | 11513062 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 83 | 070A | 231.70 | 3/31/2008 | 2345 | PDO | 08308556 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 84 | 070A | 231.70 | 2/26/2011 | 0850 | PDO | 11303766 | OFF LEFT | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{E})$ |
| 85 | 070A | 231.78 | 12/19/2008 | 1723 | PDO | 08302978 | ON | NON-INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | N |
| 86 | 070A | 231.78 | 2/14/2010 | 1721 | PDO | 10300958 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 87 | 070A | 231.80 | 1/1/2008 | 1430 | PDO | 08311454 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 88 | 070A | 231.80 | 2/7/2009 | 1550 | PDO | 09302148 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 89 | 070A | 231.80 | 9/19/2010 | 1340 | PDO | 10312539 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 90 | 070A | 231.80 | 2/20/2011 | 1455 | PDO | 11303346 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 91 | 070A | 231.80 | 12/23/2011 | 1655 | PDO | 11513064 | ON | NON-INTERSECTION | 3 | DRY | DARK-UNLIGHTED | NONE | N |
| 92 | 070A | 231.80 | 10/8/2010 | 1915 | PDO | 10314102 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | WIND | N |
| 93 | 070A | 231.80 | 6/9/2009 | 2140 | PDO | 09307435 | ON | NON-INTERSECTION | 1 | WET | DARK-UNLIGHTED | NONE | N |
| 94 | 070A | 231.86 | 7/11/2012 | 0420 | PDO | 12512879 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 95 | 070A | 231.88 | 3/31/2008 | 2155 | PDO | 08308555 | OFF RIGHT | RAMP | 1 | ICY | DARK-UNLIGHTED | NONE | $\mathrm{Y}(\mathrm{D})$ |
| 96 | 070A | 231.90 | 3/9/2008 | 1355 | PDO | 08312152 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 97 | 070A | 231.90 | 3/20/2008 | 1715 | PDO | 08312156 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 98 | 070A | 231.90 | 10/21/2008 | 0753 | PDO | 08317229 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 99 | 070A | 231.90 | 10/21/2008 | 2100 | PDO | 08310558 | OFF LEFT | NON-INTERSECTION | 1 | WET W/VIS ICY ROAD TREATMENT | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 100 | 070A | 231.90 | 12/4/2011 | 0520 | PDO | 11510970 | OFF LEFT | NON-INTERSECTION | 1 | WET | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 101 | 070A | 232.00 | 1/27/2012 | 0855 | INJ | 12501620 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | NONE | N |
| 102 | 070A | 232.00 | 1/2/2008 | 1530 | PDO | 08308519 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 103 | 070A | 232.00 | 1/4/2008 | 1528 | PDO | 08308521 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | WIND | N |
| 104 | 070A | 232.00 | 9/21/2008 | 1340 | PDO | 08310552 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 105 | 070A | 232.00 | 12/6/2008 | 1540 | PDO | 08301310 | ON | NON-INTERSECTION | 3 | WET | DAYLIGHT | NONE | N |
| 106 | 070A | 232.00 | 12/19/2008 | 1625 | PDO | 08330871 | ON | NON-INTERSECTION | 3 | DRY | DAWN OR DUSK | NONE | N |
| 107 | 070A | 232.00 | 12/21/2008 | 1530 | PDO | 08302850 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 108 | 070A | 232.00 | 1/5/2009 | 1530 | PDO | 09300200 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 109 | 070A | 232.00 | 1/1/2010 | 1530 | PDO | 10325719 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 110 | 070A | 232.00 | 12/23/2011 | 1510 | PDO | 11513067 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 111 | 070A | 232.00 | 3/17/2012 | 1100 | PDO | 12505336 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 112 | 070A | 232.00 | 11/22/2008 | 1630 | PDO | 08310631 | ON | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | NONE | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 57 | SIDESWIPE (SAME DIRECTION) | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | PASSING |
| 58 | WILD ANIMAL | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 59 | REAR END | E | SUV | NONE APPARENT | 70 | GOING STRAIGHT |
| 60 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 61 | REAR END | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 70 | GOING STRAIGHT |
| 62 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 63 | REAR END | E | SUV | NONE APPARENT | 35 | GOING STRAIGHT |
| 64 | REAR END | E | PASSENGER CAR/VAN | DISTRACTED/OTHER | 15 | GOING STRAIGHT |
| 65 | REAR END | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 50 | GOING STRAIGHT |
| 66 | GUARD RAIL | W | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 67 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 68 | LARGE ROCKS/BOULDER | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 69 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 70 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 71 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 40 | SLOWING |
| 72 | REAR END | E | SUV | AGRESSIVE DRIVING | 25 | GOING STRAIGHT |
| 73 | WILD ANIMAL | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 74 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 75 | SIGN | W | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 76 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 65 | SPUN OUT OF CONTROL |
| 77 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER EMOTIONALLY UPSET | 65 | GOING STRAIGHT |
| 78 | GUARD RAIL | W | SUV | DRIVER UNFAMILIAR W/AREA | 45 | GOING STRAIGHT |
| 79 | REAR END | E | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 80 | REAR END | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 40 | GOING STRAIGHT |
| 81 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 82 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 83 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 45 | SPUN OUT OF CONTROL |
| 84 | GUARD RAIL | E | SUV | AGRESSIVE DRIVING | 15 | BACKING |
| 85 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 35 | CHANGING LANES |
| 86 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 87 | REAR END | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 15 | GOING STRAIGHT |
| 88 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 40 | GOING STRAIGHT |
| 89 | REAR END | E | MOTORCYCLE | NONE APPARENT | 60 | GOING STRAIGHT |
| 90 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 35 | SLOWING |
| 91 | REAR END | E | HIT \& RUN - UNKNOWN | NONE APPARENT | 0 | CHANGING LANES |
| 92 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | AVOIDING OBJECT IN ROAD |
| 93 | WILD ANIMAL | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 94 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 70 | GOING STRAIGHT |
| 95 | OVERTURNING | W | SUV | DRIVER INEXPERIENCE | 25 | SPUN OUT OF CONTROL |
| 96 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 97 | REAR END | E | SUV | NONE APPARENT | 10 | GOING STRAIGHT |
| 98 | GUARD RAIL | W | PASSENGER CAR/VAN | ASLEEP AT THE WHEEL | 65 | GOING STRAIGHT |
| 99 | OVERTURNING | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 100 | GUARD RAIL | E | PASSENGER CAR/VAN | ASLEEP AT THE WHEEL | 60 | SPUN OUT OF CONTROL |
| 101 | OVERTURNING | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 102 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 103 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 104 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | PASSING |
| 105 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 106 | REAR END | E | SUV | NONE APPARENT | 65 | CHANGING LANES |
| 107 | REAR END | E | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 108 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 109 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 110 | REAR END | E | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 111 | REAR END | W | SUV | NONE APPARENT | 60 | SLOWING |
| 112 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 65 | PASSING |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 113 | 070A | 232.00 | 11/21/2011 | 2245 | PDO | 11509402 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 114 | 070A | 232.00 | 1/22/2011 | 1447 | PDO | 11301498 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 115 | 070A | 232.00 | 4/17/2008 | 0915 | PDO | 08304117 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 116 | 070A | 232.00 | 2/21/2010 | 0511 | PDO | 10301591 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 117 | 070A | 232.00 | 11/26/2011 | 0730 | PDO | 11509861 | OFF RIGHT | RAMP | 1 | ICY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{L})$ |
| 118 | 070A | 232.00 | 11/26/2011 | 0000 | PDO | 11509856 | OFF RIGHT | RAMP |  | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | $\mathrm{Y}(\mathrm{L})$ |
| 119 | 070A | 232.01 | 1/11/2009 | 1453 | PDO | 09314159 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | WIND | N |
| 120 | 070A | 232.02 | 12/16/2011 | 0645 | PDO | 11512200 | ON | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 121 | 070A | 232.08 | 11/22/2009 | 1340 | PDO | 09323414 | OFF LEFT | RAMP |  | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{H})$ |
| 122 | 070A | 232.08 | 12/17/2009 | 0750 | PDO | 09323793 | OFF LEFT | RAMP | 1 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{H})$ |
| 123 | 070A | 232.08 | 12/24/2012 | 0639 | PDO | 12525298 | OFF RIGHT | RAMP | 1 | WET W/VIS ICY ROAD TREATMENT | DARK-UNLIGHTED | NONE | $\mathrm{Y}(\mathrm{H})$ |
| 124 | 070A | 232.09 | 6/6/2009 | 1510 | PDO | 09315472 | OFF LEFT | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{H})$ |
| 125 | 070A | 232.09 | 5/4/2010 | 0815 | PDO | 10303912 | OFF RIGHT | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{H})$ |
| 126 | 070A | 232.10 | 3/31/2008 | 1900 | PDO | 08311486 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 127 | 070A | 232.10 | 4/13/2008 | 1830 | PDO | 08311507 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 128 | 070A | 232.10 | 12/21/2008 | 1400 | PDO | 08302849 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 129 | 070A | 232.10 | 2/20/2011 | 1659 | PDO | 11303342 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 130 | 070A | 232.10 | 12/19/2009 | 0920 | PDO | 09323797 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 131 | 070A | 232.10 | 8/9/2008 | 0745 | PDO | 08311519 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 132 | 070A | 232.10 | 4/6/2010 | 2145 | PDO | 10302766 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | WIND | N |
| 133 | 070A | 232.10 | 11/22/2010 | 0845 | PDO | 10314804 | OFF RIGHT | NON-INTERSECTION | 1 | ICY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 134 | 070A | 232.10 | 4/24/2012 | 1620 | PDO | 12507709 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 135 | 070A | 232.10 | 4/3/2009 | 1350 | PDO | 09305309 | OFF LEFT | RAMP | 1 | WET W/VIS ICY ROAD TREATMENT | DAYLIGHT | SNOW/SLEET/HAIL | $\mathrm{Y}(\mathrm{H})$ |
| 136 | 070A | 232.10 | 11/6/2009 | 1510 | PDO | 09317806 | OFF LEFT | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{H})$ |
| 137 | 070A | 232.10 | 4/16/2010 | 1643 | PDO | 10325724 | OFF LEFT | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{H})$ |
| 138 | 070A | 232.20 | 6/21/2009 | 1330 | PDO | 09316438 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 139 | 070A | 232.20 | 1/16/2010 | 1540 | PDO | 10325826 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 140 | 070A | 232.20 | 12/26/2011 | 1545 | PDO | 11513341 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 141 | 070A | 232.20 | 1/8/2012 | 1500 | PDO | 12500306 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | NONE | N |
| 142 | 070A | 232.20 | 6/26/2009 | 0845 | PDO | 09308087 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 143 | 070A | 232.20 | 7/14/2011 | 2110 | PDO | 11311498 | ON | NON-INTERSECTION | 1 | WET | DARK-UNLIGHTED | NONE | N |
| 144 | 070A | 232.20 | 3/31/2008 | 2015 | PDO | 08308554 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 145 | 070A | 232.20 | 3/10/2010 | 0856 | PDO | 10325832 | OFF LEFT | NON-INTERSECTION | 1 | WET W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 146 | 070A | 232.20 | 2/28/2012 | 1705 | PDO | 12504225 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 147 | 070A | 232.30 | 2/25/2008 | 1115 | PDO | 08304436 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 148 | 070A | 232.30 | 3/7/2008 | 1700 | PDO | 08310503 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 149 | 070A | 232.30 | 3/21/2008 | 1519 | PDO | 08308568 | ON | NON-INTERSECTION | 5 | DRY | DAYLIGHT | NONE | N |
| 150 | 070A | 232.30 | 3/21/2008 | 1519 | PDO | 08308569 | ON | NON-INTERSECTION | 5 | DRY | DAYLIGHT | NONE | N |
| 151 | 070A | 232.30 | 2/22/2010 | 0915 | PDO | 10301230 | ON | NON-INTERSECTION | 2 | SLUSHY | DAYLIGHT | NONE | N |
| 152 | 070A | 232.30 | 9/19/2010 | 1715 | PDO | 10312538 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 153 | 070A | 232.30 | 11/22/2010 | 0550 | PDO | 10314806 | OFF RIGHT | NON-INTERSECTION |  | ICY | DARK-UNLIGHTED | NONE | N |
| 154 | 070A | 232.30 | 11/30/2008 | 1400 | PDO | 08310627 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 155 | 070A | 232.30 | 12/24/2010 | 1129 | PDO | 10317793 | ON | RAMP | 3 | DRY | DAYLIGHT | NONE | Y (D) |
| 156 | 070A | 232.40 | 10/25/2010 | 1645 | PDO | 10319042 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 157 | 070A | 232.40 | 2/23/2008 | 1510 | PDO | 08304433 | ON | NON-INTERSECTION | 4 | WET | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 158 | 070A | 232.40 | 1/10/2009 | 1425 | PDO | 09300589 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 159 | 070A | 232.40 | 1/16/2010 | 1534 | PDO | 10324796 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 160 | 070A | 232.40 | 10/25/2010 | 1700 | PDO | 10326580 | OFF RIGHT | NON-INTERSECTION | 3 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 161 | 070A | 232.40 | 10/30/2008 | 2050 | INJ | 08306501 | ON | NON-INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | N |
| 162 | 070A | 232.40 | 1/26/2009 | 0707 | PDO | 09301202 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 163 | 070A | 232.50 | 7/29/2009 | 1400 | INJ | 09309539 | ON | NON-INTERSECTION | 1 | WET | DAYLIGHT | NONE | N |
| 164 | 070A | 232.50 | 12/7/2008 | 1500 | PDO | 08302600 | ON | NON-INTERSECTION | 3 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 165 | 070A | 232.50 | 3/15/2009 | 1625 | PDO | 09304443 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 166 | 070A | 232.50 | 3/15/2009 | 1625 | PDO | 09304444 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 167 | 070A | 232.50 | 2/1/2009 | 1110 | PDO | 09315373 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 168 | 070A | 232.50 | 6/26/2011 | 1250 | PDO | 11310887 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 113 | WILD ANIMAL | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 114 | GUARD RAIL | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 115 | EMBANKMENT | W | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 116 | DELINEATOR POST | E | NON-SCHOOL BUS IN COMMERCE (>=9 PEO | DRIVER FATIGUE | 65 | GOING STRAIGHT |
| 117 | OVERTURNING | W | SUV | DRIVER UNFAMILIAR W/AREA | 40 | GOING STRAIGHT |
| 118 | SIGN | W | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 119 | SIGN | E | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 120 | WILD ANIMAL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 121 | SIGN | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | OTHER |
| 122 | TREE | N | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 30 | OTHER |
| 123 | TREE | E | SUV | DRIVER INEXPERIENCE | 50 | GOING STRAIGHT |
| 124 | OVERTURNING | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 35 | MAKING RIGHT TURN |
| 125 | TREE | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 50 | SPUN OUT OF CONTROL |
| 126 | OVERTURNING | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 127 | REAR END | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 20 | GOING STRAIGHT |
| 128 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 129 | REAR END | E | SUV | NONE APPARENT | 25 | SLOWING |
| 130 | SIDESWIPE (SAME DIRECTION) | W | PASSENGER CAR/VAN | NONE APPARENT | 10 | CHANGING LANES |
| 131 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | DRIVER FATIGUE | 60 | CHANGING LANES |
| 132 | SIGN | W | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 133 | TREE | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 134 | TREE | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 135 | TREE | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 56 | MAKING RIGHT TURN |
| 136 | SIGN | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 35 | GOING STRAIGHT |
| 137 | TREE | E | PASSENGER CAR/VAN | NONE APPARENT | 55 | MAKING RIGHT TURN |
| 138 | REAR END | E | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 139 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 30 | SLOWING |
| 140 | REAR END | E | SUV | NONE APPARENT | 10 | SLOWING |
| 141 | REAR END | E | SUV | DRIVER UNFAMILIAR W/AREA | 50 | CHANGING LANES |
| 142 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 143 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 144 | GUARD RAIL | W | SUV | DRIVER UNFAMILIAR W/AREA | 45 | SPUN OUT OF CONTROL |
| 145 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 146 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 147 | OVERTURNING | E | PASSENGER CAR/VAN | NONE APPARENT | 35 | SPUN OUT OF CONTROL |
| 148 | REAR END | E | SUV | NONE APPARENT | 15 | SLOWING |
| 149 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 150 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 151 | REAR END | W | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 55 | GOING STRAIGHT |
| 152 | REAR END | E | SUV | NONE APPARENT | 15 | GOING STRAIGHT |
| 153 | SIGN | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 154 | TREE | W | SUV | DRIVER INEXPERIENCE | 60 | SPUN OUT OF CONTROL |
| 155 | OTHER NON-COLLISION | W | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | UK | SLOWING |
| 156 | OVERTURNING | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 157 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 25 | GOING STRAIGHT |
| 158 | REAR END | E | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 159 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 160 | PARKED MOTOR VEHICLE | W | SUV | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 161 | ROAD MAINTENANCE EQUIPMENT | E | PASSENGER CAR/VAN | DISTRACTED/OTHER | 55 | GOING STRAIGHT |
| 162 | TREE | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 65 | SPUN OUT OF CONTROL |
| 163 | OVERTURNING | E | MOTORCYCLE | NONE APPARENT | 20 | SLOWING |
| 164 | REAR END | E | SUV | DISTRACTED/OTHER | 60 | GOING STRAIGHT |
| 165 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 166 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 167 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | SLOWING |
| 168 | SIDESWIPE (SAME DIRECTION) | E | MOTORCYCLE | NONE APPARENT | 45 | PASSING |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | 070A | 232.50 | 12/15/2012 | 0939 | PDO | 12525388 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 170 | 070A | 232.50 | 10/1/2012 | 2035 | PDO | 12518966 | ON | NON-INTERSECTION |  | DRY | DARK-UNLIGHTED | NONE | N |
| 171 | 070A | 232.50 | 1/17/2011 | 1610 | PDO | 11301517 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 172 | 070A | 232.50 | 4/24/2011 | 2200 | PDO | 11306966 | OFF LEFT | NON-INTERSECTION | 1 | SLUSHY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 173 | 070A | 232.50 | 3/28/2011 | 2250 | PDO | 11305469 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 174 | 070A | 232.55 | 8/15/2010 | 2020 | PDO | 10307849 | ON | NON-INTERSECTION | 3 | DRY | DAWN OR DUSK | NONE | N |
| 175 | 070A | 232.56 | 2/21/2009 | 1624 | PDO | 09321774 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 176 | 070A | 232.60 | 12/10/2011 | 1520 | PDO | 11511819 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 177 | 070A | 232.60 | 3/31/2008 | 0558 | PDO | 08310498 | OFF LEFT | NON-INTERSECTION |  | ICY | DARK-UNLIGHTED | NONE | N |
| 178 | 070A | 232.60 | 2/25/2008 | 0430 | PDO | 08304437 | OFF RIGHT | NON-INTERSECTION |  | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 179 | 070A | 232.60 | 2/25/2008 | 0650 | PDO | 08304434 | OFF LEFT | RAMP | 1 | ICY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{D})$ |
| 180 | 070A | 232.63 | 3/1/2008 | 1630 | PDO | 08312370 | ON | AT INTERSECTION | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{N})$ |
| 181 | 070A | 232.70 | 3/31/2008 | 0520 | PDO | 08310497 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 182 | 070A | 232.70 | 6/20/2010 | 1310 | PDO | 10309777 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 183 | 070A | 232.70 | 3/23/2011 | 1655 | PDO | 11305122 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 184 | 070A | 232.70 | 12/30/2010 | 1230 | PDO | 10318368 | ON | NON-INTERSECTION | 3 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 185 | 070A | 232.70 | 12/13/2009 | 2335 | PDO | 09320044 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 186 | 070A | 232.77 | 12/30/2008 | 1805 | PDO | 08328057 | ON | NON-INTERSECTION | 3 | DRY | DARK-UNLIGHTED | NONE | N |
| 187 | 070A | 232.80 | 12/30/2010 | 1239 | PDO | 10318362 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 188 | 070A | 232.80 | 1/11/2009 | 1515 | PDO | 09301374 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | WIND | N |
| 189 | 070A | 232.80 | 1/16/2011 | 1845 | PDO | 11305496 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 190 | 070A | 232.90 | 4/24/2011 | 0330 | PDO | 11307285 | OFF LEFT | NON-INTERSECTION | 1 | WET | DARK-UNLIGHTED | NONE | N |
| 191 | 070A | 232.96 | 7/30/2012 | 1330 | INJ | 12514300 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 192 | 070A | 232.98 | 8/3/2012 | 2140 | PDO | 12514883 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 193 | 070A | 233.00 | 12/7/2008 | 1545 | PDO | 08300857 | ON | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | NONE | N |
| 194 | 070A | 233.00 | 12/31/2008 | 1600 | PDO | 08327721 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | WIND | N |
| 195 | 070A | 233.00 | 3/8/2009 | 1325 | PDO | 09303709 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 196 | 070A | 233.00 | 3/27/2008 | 1725 | PDO | 08308552 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 197 | 070A | 233.00 | 7/5/2009 | 1027 | PDO | 09317490 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 198 | 070A | 233.00 | 2/22/2010 | 1000 | PDO | 10301582 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 199 | 070A | 233.00 | 9/14/2012 | 1444 | PDO | 12517822 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 200 | 070A | 233.00 | 10/27/2009 | 1915 | PDO | 09325930 | OFF RIGHT | NON-INTERSECTION | 2 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 201 | 070A | 233.00 | 10/26/2011 | 1345 | PDO | 11504890 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 202 | 070A | 233.00 | 1/9/2011 | 1136 | PDO | 11301385 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 203 | 070A | 233.00 | 7/3/2012 | 1334 | PDO | 12512207 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 204 | 070A | 233.00 | 12/28/2011 | 0830 | PDO | 11513553 | ON | NON-INTERSECTION | 2 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | WIND | N |
| 205 | 070A | 233.01 | 2/1/2009 | 1345 | PDO | 09313659 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 206 | 070A | 233.09 | 6/11/2008 | 2215 | PDO | 08308576 | ON | RAMP | 1 | DRY | DARK-UNLIGHTED | NONE | $\mathrm{Y}(\mathrm{D})$ |
| 207 | 070A | 233.10 | 10/29/2009 | 1229 | PDO | 09324250 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY W/VIS ICY ROAD TREATMENT | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 208 | 070A | 233.10 | 5/21/2011 | 1845 | INJ | 11309919 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 209 | 070A | 233.20 | 8/14/2009 | 1520 | PDO | 09310277 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 210 | 070A | 233.20 | 12/28/2009 | 1540 | PDO | 09323788 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 211 | 070A | 233.20 | 11/28/2010 | 1440 | PDO | 10315565 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 212 | 070A | 233.20 | 8/26/2012 | 1300 | PDO | 12516455 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 213 | 070A | 233.20 | 8/26/2012 | 1307 | PDO | 12516456 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 214 | 070A | 233.20 | 6/11/2010 | 1700 | PDO | 10312037 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 215 | 070A | 233.20 | 3/17/2012 | 1100 | PDO | 12507209 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 216 | 070A | 233.30 | 2/19/2009 | 1700 | PDO | 09302832 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 217 | 070A | 233.30 | 7/6/2012 | 1650 | PDO | 12512642 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 218 | 070A | 233.30 | 4/12/2009 | 1416 | PDO | 09312904 | OFF LEFT | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 219 | 070A | 233.30 | 4/12/2009 | 1949 | PDO | 09313666 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 220 | 070A | 233.40 | 1/11/2008 | 1615 | PDO | 08312345 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 221 | 070A | 233.40 | 4/6/2010 | 1830 | PDO | 10302763 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 222 | 070A | 233.40 | 4/27/2009 | 0528 | PDO | 09306317 | OFF RIGHT | NON-INTERSECTION | 1 | SLUSHY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 223 | 070A | 233.40 | 2/14/2010 | 0940 | PDO | 10300913 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 224 | 070A | 233.47 | 2/21/2010 | 0703 | PDO | 10301584 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 169 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | CHANGING LANES |
| 170 | WILD ANIMAL | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 171 | GUARD RAIL | W | SUV | NONE APPARENT | 40 | SPUN OUT OF CONTROL |
| 172 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 173 | DELINEATOR POST | W | SUV | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 174 | REAR END | E | SUV | DISTRACTED/OTHER | 60 | GOING STRAIGHT |
| 175 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 176 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 177 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 178 | EMBANKMENT | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 179 | OVERTURNING | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 25 | GOING STRAIGHT |
| 180 | BROADSIDE | E | SUV | NONE APPARENT | 10 | ENTERING/LEAVING PARKED POSITION |
| 181 | OVERTURNING | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 45 | SPUN OUT OF CONTROL |
| 182 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | SLOWING |
| 183 | REAR END | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 65 | GOING STRAIGHT |
| 184 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 30 | SPUN OUT OF CONTROL |
| 185 | GUARD RAIL | W | SUV | NONE APPARENT | 55 | GOING STRAIGHT |
| 186 | REAR END | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 30 | SLOWING |
| 187 | REAR END | E | PICKUP TRUCK/UTILITY VAN W/TRAILER | DRIVER UNFAMILIAR W/AREA | 20 | SLOWING |
| 188 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 189 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 10 | CHANGING LANES |
| 190 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 191 | OVERTURNING | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | CHANGING LANES |
| 192 | WILD ANIMAL | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 193 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 194 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 30 | SLOWING |
| 195 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 196 | SIDESWIPE (SAME DIRECTION) | E | SUV | DISTRACTED/CELL PHONE | 65 | CHANGING LANES |
| 197 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 198 | SIDESWIPE (SAME DIRECTION) | W | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 50 | GOING STRAIGHT |
| 199 | SIDESWIPE (SAME DIRECTION) | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | CHANGING LANES |
| 200 | GUARD RAIL | W | SUV | NONE APPARENT | 40 | SPUN OUT OF CONTROL |
| 201 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 202 | CONCRETE HIGHWAY BARRIER | W | SUV | DRIVER UNFAMILIAR W/AREA | 55 | SPUN OUT OF CONTROL |
| 203 | CONCRETE HIGHWAY BARRIER | E | SUV | OTHER FACTOR | 68 | GOING STRAIGHT |
| 204 | VEHICLE DEBRIS OR CARGO | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 205 | REAR END | E | SUV | OTHER FACTOR | 65 | GOING STRAIGHT |
| 206 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 207 | CONCRETE HIGHWAY BARRIER | E | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 208 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | SPUN OUT OF CONTROL |
| 209 | OTHER NON-COLLISION | E | PICKUP TRUCK/UTILITY VAN | OTHER FACTOR | 65 | GOING STRAIGHT |
| 210 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 25 | SLOWING |
| 211 | REAR END | E | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 212 | REAR END | E | SUV | NONE APPARENT | 15 | GOING STRAIGHT |
| 213 | REAR END | E | PASSENGER CAR/VAN | OTHER FACTOR | 45 | GOING STRAIGHT |
| 214 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 215 | WILD ANIMAL | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 216 | REAR END | E | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 217 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 40 | SPUN OUT OF CONTROL |
| 218 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 55 | GOING STRAIGHT |
| 219 | GUARD RAIL | E | SUV | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 220 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 221 | EMBANKMENT | W | SUV | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 222 | LARGE ROCKS/BOULDER | W | PASSENGER CAR/VAN | NONE APPARENT | 30 | SPUN OUT OF CONTROL |
| 223 | LARGE ROCKS/BOULDER | W | SUV | NONE APPARENT | 55 | GOING STRAIGHT |
| 224 | LARGE ROCKS/BOULDER | W | SUV | DRIVER UNFAMILIAR W/AREA | 60 | GOING STRAIGHT |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 225 | 070A | 233.48 | 3/29/2011 | 0445 | PDO | 11305237 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 226 | 070A | 233.50 | 1/24/2009 | 0645 | PDO | 09301201 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 227 | 070A | 233.50 | 1/11/2009 | 1730 | PDO | 09300554 | ON | NON-INTERSECTION | 2 | WET | DAWN OR DUSK | NONE | N |
| 228 | 070A | 233.50 | 2/22/2009 | 0810 | PDO | 09303161 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 229 | 070A | 233.50 | 4/4/2009 | 0650 | PDO | 09315377 | ON | NON-INTERSECTION | 2 | SNOWY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 230 | 070A | 233.50 | 12/28/2010 | 1525 | PDO | 10318139 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 231 | 070A | 233.50 | 7/8/2012 | 1143 | PDO | 12513787 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 232 | 070A | 233.50 | 6/14/2011 | 1200 | PDO | 11313021 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 233 | 070A | 233.50 | 5/18/2012 | 2215 | PDO | 12509271 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 234 | 070A | 233.50 | 12/9/2008 | 1320 | PDO | 08300684 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 235 | 070A | 233.50 | 5/12/2010 | 1700 | PDO | 10311603 | OFF RIGHT | NON-INTERSECTION | 1 | SLUSHY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 236 | 070A | 233.50 | 1/23/2009 | 2225 | PDO | 09301168 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | NONE | N |
| 237 | 070A | 233.50 | 2/21/2010 | 0950 | PDO | 10301233 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | NONE | N |
| 238 | 070A | 233.50 | 12/18/2012 | 1650 | PDO | 12524839 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 239 | 070A | 233.50 | 4/26/2011 | 0625 | PDO | 11307030 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 240 | 070A | 233.50 | 10/26/2011 | 1720 | INJ | 11504888 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | NONE | N |
| 241 | 070A | 233.60 | 3/1/2009 | 1555 | INJ | 09303441 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 242 | 070A | 233.60 | 1/17/2010 | 0810 | PDO | 10324797 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 243 | 070A | 233.60 | 10/24/2009 | 0910 | PDO | 09323048 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 244 | 070A | 233.64 | 3/4/2010 | 1400 | PDO | 10326030 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 245 | 070A | 233.70 | 1/30/2009 | 1040 | PDO | 09313652 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 246 | 070A | 233.70 | 12/29/2009 | 0645 | PDO | 09325793 | OFF LEFT | NON-INTERSECTION | 2 | ICY | DARK-LIGHTED | NONE | N |
| 247 | 070A | 233.70 | 7/10/2009 | 1335 | PDO | 09308769 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 248 | 070A | 233.70 | 6/14/2012 | 0800 | PDO | 12510943 | OFF LEFT | NON-INTERSECTION |  | DRY | DAYLIGHT | NONE | N |
| 249 | 070A | 233.70 | 7/10/2008 | 0615 | PDO | 08306485 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 250 | 070A | 233.80 | 2/24/2009 | 0050 | INJ | 09303168 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 251 | 070A | 233.80 | 6/29/2008 | 1730 | PDO | 08304126 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 252 | 070A | 233.80 | 6/5/2011 | 1500 | PDO | 11310352 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 253 | 070A | 233.80 | 11/14/2008 | 0815 | PDO | 08306522 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 254 | 070A | 233.90 | 1/23/2010 | 1615 | PDO | 10300550 | ON | NON-INTERSECTION | 2 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 255 | 070A | 233.90 | 11/14/2008 | 0735 | PDO | 08306521 | OFF LEFT | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 256 | 070A | 233.94 | 5/30/2009 | 1150 | PDO | 09314168 | ON | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 257 | 070A | 234.00 | 6/10/2012 | 1349 | PDO | 12510601 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 258 | 070A | 234.00 | 8/7/2011 | 1930 | PDO | 11500286 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 259 | 070A | 234.00 | 3/14/2008 | 0855 | PDO | 08308561 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 260 | 070A | 234.00 | 2/1/2008 | 0740 | PDO | 08308536 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 261 | 070A | 234.00 | 2/1/2008 | 0750 | PDO | 08315231 | OFF RIGHT | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 262 | 070A | 234.00 | 6/17/2008 | 1555 | PDO | 08315255 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 263 | 070A | 234.00 | 7/11/2010 | 1620 | PDO | 10310171 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 264 | 070A | 234.00 | 4/24/2008 | 1401 | PDO | 08308571 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 265 | 070A | 234.00 | 4/2/2012 | 1020 | PDO | 12506154 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 266 | 070A | 234.00 | 8/22/2012 | 1900 | PDO | 12515940 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 267 | 070A | 234.00 | 12/4/2008 | 1300 | PDO | 08301070 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 268 | 070A | 234.00 | 8/23/2008 | 2115 | PDO | 08315575 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 269 | 070A | 234.00 | 6/2/2010 | 2000 | PDO | 10305465 | ON | NON-INTERSECTION | 1 | WET | DAWN OR DUSK | RAIN | N |
| 270 | 070A | 234.07 | 3/19/2008 | 0850 | PDO | 08311493 | ON | RAMP | 1 | DRY | DAYLIGHT | WIND | $\mathrm{Y}(\mathrm{T})$ |
| 271 | 070A | 234.07 | 3/19/2008 | 0850 | PDO | 08311494 | ON | RAMP | 1 | DRY | DAYLIGHT | WIND | $Y(T)$ |
| 272 | 070A | 234.07 | 5/18/2008 | 2025 | PDO | 08325288 | ON | RAMP | 1 | DRY | DARK-LIGHTED | NONE | $\mathrm{Y}(\mathrm{T})$ |
| 273 | 070A | 234.08 | 9/6/2011 | 0438 | PDO | 11502409 | OFF RIGHT | PARKING LOT | 1 | DRY | DARK-LIGHTED | NONE | $Y(T)$ |
| 274 | 070A | 234.10 | 12/19/2008 | 1630 | PDO | 08302848 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 275 | 070A | 234.10 | 1/16/2011 | 1615 | PDO | 11301478 | ON | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | WIND | N |
| 276 | 070A | 234.10 | 3/19/2010 | 1323 | INJ | 10301781 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 277 | 070A | 234.10 | 4/12/2009 | 1340 | PDO | 09315469 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 278 | 070A | 234.10 | 3/19/2010 | 1323 | PDO | 10302211 | OFF RIGHT | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 279 | 070A | 234.10 | 3/19/2010 | 1323 | PDO | 10304263 | OFF LEFT | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 280 | 070A | 234.10 | 7/30/2010 | 1945 | PDO | 10307271 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 225 | OVERTURNING | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 226 | OVERTURNING | W | SUV | DRIVER UNFAMILIAR W/AREA | 60 | SPUN OUT OF CONTROL |
| 227 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 228 | REAR END | W | SUV | NONE APPARENT | 45 | SLOWING |
| 229 | REAR END | W | SUV | NONE APPARENT | 55 | GOING STRAIGHT |
| 230 | REAR END | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 50 | SLOWING |
| 231 | REAR END | E | SUV | NONE APPARENT | 20 | GOING STRAIGHT |
| 232 | SIDESWIPE (SAME DIRECTION) | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | CHANGING LANES |
| 233 | WILD ANIMAL | W | SUV | NONE APPARENT | 68 | GOING STRAIGHT |
| 234 | GUARD RAIL | E | PICKUP TRUCK/UTILITY VAN | DRIVER FATIGUE | 65 | SPUN OUT OF CONTROL |
| 235 | GUARD RAIL | W | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 236 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 237 | CONCRETE HIGHWAY BARRIER | W | SUV | DRIVER INEXPERIENCE | 50 | SPUN OUT OF CONTROL |
| 238 | CONCRETE HIGHWAY BARRIER | W | SUV | DRIVER INEXPERIENCE | 65 | GOING STRAIGHT |
| 239 | EMBANKMENT | W | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 55 | SPUN OUT OF CONTROL |
| 240 | LARGE ROCKS/BOULDER | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 241 | REAR END | E | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 242 | SIDESWIPE (SAME DIRECTION) | W | PASSENGER CAR/VAN | DISTRACTED/OTHER | 60 | GOING STRAIGHT |
| 243 | WILD ANIMAL | E | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 244 | REAR END | W | SUV | ILLNESS/MEDICAL | 60 | GOING STRAIGHT |
| 245 | REAR END | W | SUV | NONE APPARENT | 30 | GOING STRAIGHT |
| 246 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 247 | CONCRETE HIGHWAY BARRIER | E | SUV | ASLEEP AT THE WHEEL | 65 | GOING STRAIGHT |
| 248 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | DRIVER INEXPERIENCE | 60 | SPUN OUT OF CONTROL |
| 249 | VEHICLE DEBRIS OR CARGO | W | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 0 | STOPPED IN TRAFFIC |
| 250 | OVERTURNING | W | PICKUP TRUCK/UTILITY VAN | DRIVER INEXPERIENCE | 40 | SPUN OUT OF CONTROL |
| 251 | REAR END | E | MOTORCYCLE | NONE APPARENT | 30 | GOING STRAIGHT |
| 252 | REAR END | E | SUV | NONE APPARENT | 35 | GOING STRAIGHT |
| 253 | OVERTURNING | W | SUV | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 254 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 255 | GUARD RAIL | W | SUV | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 256 | OTHER NON-COLLISION | W | VEH COMBO (10,001 LBS AND OVER) | DRIVER UNFAMILIAR W/AREA | 40 | CHANGING LANES |
| 257 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 0 | CHANGING LANES |
| 258 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 259 | SIDESWIPE (SAME DIRECTION) | W | SUV | NONE APPARENT | 25 | SPUN OUT OF CONTROL |
| 260 | SIDESWIPE (SAME DIRECTION) | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 261 | OVERTURNING | W | SUV | NONE APPARENT | 55 | GOING STRAIGHT |
| 262 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | WEAVING |
| 263 | SIDESWIPE (SAME DIRECTION) | W | MOTOR HOME | NONE APPARENT | 65 | CHANGING LANES |
| 264 | GUARD RAIL | W | SUV | ASLEEP AT THE WHEEL | 65 | WEAVING |
| 265 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 266 | GUARD RAIL | W | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 267 | CONCRETE HIGHWAY BARRIER | E | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 70 | GOING STRAIGHT |
| 268 | INVOLVING OTHER OBJECT | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 269 | INVOLVING OTHER OBJECT | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 270 | OTHER FIXED OBJECT | W | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 271 | OTHER FIXED OBJECT | W | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 272 | OTHER FIXED OBJECT | W | VEH COMBO (10,001 LBS AND OVER) | DRIVER UNFAMILIAR W/AREA | 5 | BACKING |
| 273 | CONCRETE HIGHWAY BARRIER | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 2 | BACKING |
| 274 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 275 | REAR END | E | SUV | NONE APPARENT | 20 | GOING STRAIGHT |
| 276 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 30 | AVOIDING OBJECT IN ROAD |
| 277 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 278 | GUARD RAIL | E | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 55 | SPUN OUT OF CONTROL |
| 279 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 45 | AVOIDING OBJECT IN ROAD |
| 280 | GUARD RAIL | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 281 | 070A | 234.10 | 11/16/2010 | 2150 | PDO | 10319957 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | WIND | N |
| 282 | 070A | 234.10 | 3/29/2011 | 0743 | PDO | 11305492 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 283 | 070A | 234.10 | 3/29/2011 | 0743 | PDO | 11305493 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 284 | 070A | 234.10 | 3/29/2011 | 0743 | INJ | 11305729 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 285 | 070A | 234.10 | 10/26/2012 | 0100 | PDO | 12520320 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | NONE | N |
| 286 | 070A | 234.10 | 10/26/2012 | 0552 | PDO | 12522622 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 287 | 070A | 234.12 | 5/17/2009 | 1735 | PDO | 09307078 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 288 | 070A | 234.20 | 4/17/2008 | 0415 | PDO | 08329546 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 289 | 070A | 234.20 | 8/1/2008 | 1845 | PDO | 08311518 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 290 | 070A | 234.20 | 1/8/2009 | 0940 | PDO | 09300196 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 291 | 070A | 234.20 | 12/13/2009 | 1230 | PDO | 09326984 | ON | NON-INTERSECTION | 2 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 292 | 070A | 234.20 | 10/1/2008 | 1515 | PDO | 08306502 | OFF RIGHT | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 293 | 070A | 234.20 | 12/23/2008 | 1810 | PDO | 08329372 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 294 | 070A | 234.23 | 8/2/2009 | 1555 | PDO | 09321806 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 295 | 070A | 234.30 | 1/11/2009 | 1530 | PDO | 09301375 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | WIND | N |
| 296 | 070A | 234.30 | 12/17/2011 | 1600 | PDO | 11512213 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 297 | 070A | 234.30 | 1/18/2011 | 0902 | PDO | 11300931 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 298 | 070A | 234.30 | 4/15/2011 | 0800 | PDO | 11306666 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 299 | 070A | 234.33 | 6/13/2012 | 0950 | PDO | 12510949 | ON | RAMP | 2 | DRY | DAYLIGHT | NONE | Y (D) |
| 300 | 070A | 234.33 | 2/26/2008 | 0830 | PDO | 08304409 | OFF RIGHT | INTERSECTION RELATED | 1 | ICY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{O})$ |
| 301 | 070A | 234.40 | 10/26/2011 | 1715 | PDO | 11504670 | ON | NON-INTERSECTION | 2 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 302 | 070A | 234.40 | 9/14/2008 | 1300 | PDO | 08312193 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 303 | 070A | 234.40 | 3/9/2012 | 1625 | PDO | 12504809 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 304 | 070A | 234.40 | 3/28/2009 | 0700 | PDO | 09306110 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 305 | 070A | 234.40 | 10/25/2009 | 1925 | PDO | 09324282 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY W/VIS ICY ROAD TREATMENT | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 306 | 070A | 234.40 | 12/10/2009 | 1950 | PDO | 09323723 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 307 | 070A | 234.45 | 3/29/2009 | 1640 | PDO | 09320759 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 308 | 070A | 234.50 | 2/15/2010 | 1410 | PDO | 10324278 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | WIND | N |
| 309 | 070A | 234.50 | 3/6/2010 | 1100 | PDO | 10324280 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | WIND | N |
| 310 | 070A | 234.50 | 12/9/2012 | 1412 | PDO | 12523763 | ON | NON-INTERSECTION | 3 | WET W/VIS ICY ROAD TREATMENT | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 311 | 070A | 234.50 | 12/1/2008 | 1340 | PDO | 08310633 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | WIND | N |
| 312 | 070A | 234.50 | 8/19/2011 | 1253 | INJ | 11501370 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 313 | 070A | 234.58 | 2/6/2010 | 1600 | PDO | 10326054 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 314 | 070A | 234.60 | 1/24/2008 | 1328 | PDO | 08308530 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 315 | 070A | 234.60 | 8/4/2009 | 0530 | PDO | 09309799 | ON | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 316 | 070A | 234.60 | 7/19/2012 | 0450 | PDO | 12513266 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 317 | 070A | 234.70 | 8/14/2010 | 1240 | PDO | 10307731 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 318 | 070A | 234.70 | 12/23/2011 | 1600 | PDO | 11513065 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 319 | 070A | 234.80 | 12/9/2011 | 1515 | PDO | 11511443 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 320 | 070A | 234.80 | 1/4/2009 | 1318 | PDO | 09314465 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 321 | 070A | 234.80 | 7/3/2009 | 1815 | PDO | 09308725 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 322 | 070A | 234.80 | 1/15/2008 | 1500 | PDO | 08308528 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 323 | 070A | 234.90 | 12/29/2008 | 0910 | PDO | 08328637 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 324 | 070A | 234.90 | 8/15/2010 | 1315 | PDO | 10307819 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 325 | 070A | 234.90 | 11/26/2010 | 0820 | PDO | 10316068 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 326 | 070A | 234.90 | 11/26/2010 | 0840 | PDO | 10316067 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 327 | 070A | 234.90 | 8/27/2011 | 1600 | PDO | 11501344 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 328 | 070A | 234.90 | 3/12/2009 | 1910 | PDO | 09304105 | ON | NON-INTERSECTION | 2 | SLUSHY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 329 | 070A | 234.90 | 1/17/2011 | 2240 | PDO | 11300933 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 330 | 070A | 234.90 | 4/4/2009 | 0535 | PDO | 09313661 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 331 | 070A | 234.90 | 10/21/2008 | 1940 | INJ | 08306509 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 332 | 070A | 234.98 | 6/29/2008 | 1430 | PDO | 08306473 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 333 | 070A | 234.98 | 4/11/2009 | 1222 | PDO | 09317566 | ON | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | NONE | N |
| 334 | 070A | 235.00 | 3/19/2008 | 1000 | PDO | 08308228 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 335 | 070A | 235.00 | 4/24/2011 | 1515 | PDO | 11306974 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 336 | 070A | 235.00 | 6/24/2011 | 1525 | PDO | 11311262 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 281 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 30 | SPUN OUT OF CONTROL |
| 282 | GUARD RAIL | W | SUV | ASLEEP AT THE WHEEL | 65 | GOING STRAIGHT |
| 283 | GUARD RAIL | W | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 284 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 285 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | DISTRACTED/OTHER | 55 | GOING STRAIGHT |
| 286 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 287 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 80 | GOING STRAIGHT |
| 288 | OVERTURNING | W | SUV | DISTRACTED/OTHER | 50 | SPUN OUT OF CONTROL |
| 289 | REAR END | W | SUV | NONE APPARENT | 40 | GOING STRAIGHT |
| 290 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 15 | GOING STRAIGHT |
| 291 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 40 | GOING STRAIGHT |
| 292 | GUARD RAIL | W | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | UK | BACKING |
| 293 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 294 | REAR END | W | SUV | NONE APPARENT | 65 | CHANGING LANES |
| 295 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 296 | REAR END | E | SUV | NONE APPARENT | 15 | SLOWING |
| 297 | SIDESWIPE (SAME DIRECTION) | W | SUV | DRIVER UNFAMILIAR W/AREA | 50 | SPUN OUT OF CONTROL |
| 298 | LIGHT/UTILITY POLE | E | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 299 | PARKED MOTOR VEHICLE | W | PASSENGER CAR/VAN | DRIVER FATIGUE | 55 | GOING STRAIGHT |
| 300 | EMBANKMENT | E | SUV | NONE APPARENT | 20 | MAKING LEFT TURN |
| 301 | OTHER NON-COLLISION | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 35 | CHANGING LANES |
| 302 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 303 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 20 | GOING STRAIGHT |
| 304 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | CHANGING LANES |
| 305 | GUARD RAIL | W | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 306 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 307 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 308 | REAR END | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 65 | GOING STRAIGHT |
| 309 | REAR END | W | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 310 | REAR END | E | SUV | NONE APPARENT | UK | GOING STRAIGHT |
| 311 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 312 | GUARD RAIL | E | PICKUP TRUCK/UTILITY VAN | ASLEEP AT THE WHEEL | 60 | GOING STRAIGHT |
| 313 | REAR END | E | SUV | DRIVER INEXPERIENCE | 50 | GOING STRAIGHT |
| 314 | REAR END | E | SUV | NONE APPARENT | 25 | GOING STRAIGHT |
| 315 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 316 | WILD ANIMAL | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 317 | REAR END | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 40 | GOING STRAIGHT |
| 318 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 20 | GOING STRAIGHT |
| 319 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | UK | PASSING |
| 320 | REAR END | E | PICKUP TRUCK/UTILITY VAN W/TRAILER | NONE APPARENT | 25 | GOING STRAIGHT |
| 321 | REAR END | W | SUV | NONE APPARENT | 35 | GOING STRAIGHT |
| 322 | CABLE RAIL | E | SUV | ASLEEP AT THE WHEEL | 65 | GOING STRAIGHT |
| 323 | REAR END | W | PASSENGER CAR/VAN | DISTRACTED/OTHER | 20 | GOING STRAIGHT |
| 324 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 325 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 326 | REAR END | W | SUV | NONE APPARENT | 70 | GOING STRAIGHT |
| 327 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 328 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN W/TRAILER | DRIVER INEXPERIENCE | 40 | SPUN OUT OF CONTROL |
| 329 | SIGN | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 330 | GUARD RAIL | W | SUV | NONE APPARENT | 30 | SPUN OUT OF CONTROL |
| 331 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 332 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 333 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 334 | REAR END | W | SUV | NONE APPARENT | 10 | GOING STRAIGHT |
| 335 | REAR END | E | SUV | NONE APPARENT | 20 | GOING STRAIGHT |
| 336 | REAR END | W | SUV | DUI, DWAI, DUID | 35 | GOING STRAIGHT |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 337 | 070A | 235.00 | 8/19/2011 | 1427 | PDO | 11501373 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 338 | 070A | 235.00 | 11/26/2011 | 1530 | PDO | 11509853 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 339 | 070A | 235.00 | 1/18/2012 | 1230 | PDO | 12500944 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 340 | 070A | 235.00 | 9/12/2009 | 1515 | PDO | 09328887 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 341 | 070A | 235.00 | 12/2/2009 | 1650 | PDO | 09320748 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | NONE | N |
| 342 | 070A | 235.00 | 7/6/2012 | 2115 | INJ | 12512906 | OFF LEFT | NON-INTERSECTION | 2 | WET | DARK-UNLIGHTED | RAIN | N |
| 343 | 070A | 235.00 | 1/30/2010 | 1600 | PDO | 10324936 | ON | AT INTERSECTION | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{N})$ |
| 344 | 070A | 235.06 | 2/29/2008 | 0845 | PDO | 08308535 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 345 | 070A | 235.10 | 3/14/2008 | 0615 | PDO | 08305822 | OFF RIGHT | NON-INTERSECTION | , | ICY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 346 | 070A | 235.10 | 3/14/2008 | 0723 | PDO | 08305823 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 347 | 070A | 235.10 | 2/22/2009 | 0845 | PDO | 09303139 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 348 | 070A | 235.10 | 12/28/2010 | 1235 | PDO | 10318005 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 349 | 070A | 235.10 | 4/1/2011 | 1640 | PDO | 11305510 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 350 | 070A | 235.10 | 6/5/2011 | 1400 | PDO | 11310214 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 351 | 070A | 235.10 | 6/11/2010 | 1318 | PDO | 10312051 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 352 | 070A | 235.10 | 8/1/2012 | 1620 | PDO | 12514825 | OFF LEFT | NON-INTERSECTION |  | WET | DAYLIGHT | RAIN | N |
| 353 | 070A | 235.20 | 12/14/2008 | 2315 | INJ | 08330894 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 354 | 070A | 235.20 | 12/29/2009 | 0855 | PDO | 09323057 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 355 | 070A | 235.20 | 3/19/2010 | 1430 | PDO | 10304303 | ON | NON-INTERSECTION | 2 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 356 | 070A | 235.20 | 4/2/2010 | 1713 | PDO | 10302501 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 357 | 070A | 235.20 | 2/4/2008 | 2008 | PDO | 08311470 | ON | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 358 | 070A | 235.20 | 2/23/2012 | 2130 | PDO | 12503881 | ON | NON-INTERSECTION | 1 | SNOWY W/VIS ICY ROAD TREATMENT | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 359 | 070A | 235.20 | 11/15/2009 | 1545 | PDO | 09324623 | OFF LEFT | NON-INTERSECTION | 1 | SLUSHY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 360 | 070A | 235.20 | 5/15/2009 | 0640 | PDO | 09314074 | ON | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{D})$ |
| 361 | 070A | 235.30 | 3/9/2012 | 1605 | PDO | 12504811 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 362 | 070A | 235.30 | 5/16/2009 | 0720 | PDO | 09315471 | OFF RIGHT | NON-INTERSECTION |  | WET | DAYLIGHT | NONE | N |
| 363 | 070A | 235.30 | 1/17/2011 | 1525 | PDO | 11301651 | OFF RIGHT | NON-INTERSECTION |  | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 364 | 070A | 235.30 | 2/14/2010 | 1509 | PDO | 10300963 | ON | RAMP | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{D})$ |
| 365 | 070A | 235.40 | 2/20/2010 | 0745 | INJ | 10301109 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | NONE | N |
| 366 | 070A | 235.40 | 1/1/2010 | 1315 | PDO | 10326047 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 367 | 070A | 235.40 | 9/16/2012 | 1215 | PDO | 12517495 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 368 | 070A | 235.40 | 9/30/2012 | 1610 | PDO | 12518560 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 369 | 070A | 235.40 | 8/21/2008 | 0615 | PDO | 08320182 | ON | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | NONE | N |
| 370 | 070A | 235.40 | 4/7/2009 | 2050 | PDO | 09316435 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 371 | 070A | 235.40 | 11/21/2009 | 1755 | PDO | 09320431 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 372 | 070A | 235.40 | 8/9/2009 | 0725 | INJ | 09310187 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 373 | 070A | 235.50 | 3/14/2008 | 0724 | PDO | 08308560 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 374 | 070A | 235.50 | 12/6/2008 | 0900 | PDO | 08301073 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | WIND | N |
| 375 | 070A | 235.50 | 12/23/2009 | 0905 | PDO | 09322978 | ON | NON-INTERSECTION | 3 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 376 | 070A | 235.50 | 6/10/2012 | 1830 | PDO | 12510597 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 377 | 070A | 235.50 | 11/30/2008 | 0630 | PDO | 08310626 | OFF RIGHT | NON-INTERSECTION | 2 | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 378 | 070A | 235.50 | 11/14/2008 | 0830 | PDO | 08303803 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 379 | 070A | 235.50 | 9/12/2009 | 1518 | INJ | 09320839 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 380 | 070A | 235.50 | 1/17/2011 | 2215 | PDO | 11300944 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 381 | 070A | 235.50 | 12/30/2012 | 1940 | PDO | 12526254 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 382 | 070A | 235.50 | 12/30/2011 | 0935 | PDO | 11513690 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | WIND | N |
| 383 | 070A | 235.51 | 11/14/2008 | 0940 | PDO | 08306523 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 384 | 070A | 235.55 | 2/18/2011 | 0930 | PDO | 11303206 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 385 | 070A | 235.60 | 3/13/2010 | 0715 | PDO | 10324528 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 386 | 070A | 235.60 | 2/13/2011 | 1140 | PDO | 11302778 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 387 | 070A | 235.60 | 2/27/2011 | 1100 | PDO | 11303761 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 388 | 070A | 235.60 | 10/14/2011 | 1625 | PDO | 11503942 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 389 | 070A | 235.70 | 1/23/2010 | 1500 | PDO | 10300551 | ON | NON-INTERSECTION | 2 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 390 | 070A | 235.70 | 2/18/2011 | 1550 | INJ | 11303675 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 391 | 070A | 235.70 | 9/30/2009 | 2310 | PDO | 09311887 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 392 | 070A | 235.70 | 11/30/2008 | 0508 | PDO | 08317322 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 337 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 338 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 25 | CHANGING LANES |
| 339 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 70 | PASSING |
| 340 | GUARD RAIL | E | SUV | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 341 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 342 | GUARD RAIL | E | SUV | DRIVER UNFAMILIAR W/AREA | 65 | SPUN OUT OF CONTROL |
| 343 | BROADSIDE | N | SUV | NONE APPARENT | 5 | MAKING LEFT TURN |
| 344 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 345 | OVERTURNING | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 40 | SPUN OUT OF CONTROL |
| 346 | OVERTURNING | W | SUV | DRIVER INEXPERIENCE | 50 | SPUN OUT OF CONTROL |
| 347 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 10 | CHANGING LANES |
| 348 | REAR END | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 349 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 25 | SLOWING |
| 350 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 65 | CHANGING LANES |
| 351 | SIGN | W | SUV | AGRESSIVE DRIVING | 60 | SPUN OUT OF CONTROL |
| 352 | OTHER FIXED OBJECT | E | SUV | DRIVER INEXPERIENCE | 65 | SPUN OUT OF CONTROL |
| 353 | OVERTURNING | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 354 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 355 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 40 | GOING STRAIGHT |
| 356 | REAR END | E | SUV | NONE APPARENT | 35 | GOING STRAIGHT |
| 357 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | PASSING |
| 358 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 359 | EMBANKMENT | E | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 360 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 361 | REAR END | E | SUV | NONE APPARENT | 30 | GOING STRAIGHT |
| 362 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 363 | TREE | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 364 | SIDESWIPE (SAME DIRECTION) | W | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 5 | PASSING |
| 365 | OVERTURNING | E | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 366 | REAR END | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 55 | GOING STRAIGHT |
| 367 | REAR END | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 65 | GOING STRAIGHT |
| 368 | REAR END | E | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 369 | SIDESWIPE (SAME DIRECTION) | W | PASSENGER CAR/VAN | DISTRACTED/OTHER | 60 | PASSING |
| 370 | WILD ANIMAL | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 371 | WILD ANIMAL | E | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 372 | EMBANKMENT | E | PASSENGER CAR/VAN | ASLEEP AT THE WHEEL | 65 | GOING STRAIGHT |
| 373 | OVERTURNING | W | SUV | NONE APPARENT | 45 | SPUN OUT OF CONTROL |
| 374 | REAR END | W | HIT \& RUN - UNKNOWN | NONE APPARENT | 0 | CHANGING LANES |
| 375 | REAR END | W | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 45 | GOING STRAIGHT |
| 376 | REAR END | E | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 377 | EMBANKMENT | W | PASSENGER CAR/VAN | NONE APPARENT | 45 | SPUN OUT OF CONTROL |
| 378 | SIGN | W | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 40 | SPUN OUT OF CONTROL |
| 379 | GUARD RAIL | W | SUV | AGRESSIVE DRIVING | 50 | SPUN OUT OF CONTROL |
| 380 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 381 | GUARD RAIL | E | SUV | OTHER FACTOR | 60 | SPUN OUT OF CONTROL |
| 382 | INVOLVING OTHER OBJECT | W | PICKUP TRUCK/UTILITY VAN | OTHER FACTOR | 65 | GOING STRAIGHT |
| 383 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 384 | REAR END | W | PICKUP TRUCK/UTILITY VAN | DISTRACTED/OTHER | 30 | SLOWING |
| 385 | REAR END | W | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 386 | REAR END | E | SUV | NONE APPARENT | 35 | SLOWING |
| 387 | REAR END | E | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 388 | REAREND | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 80 | PASSING |
| 389 | REAR END | E | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 390 | REAR END | E | PASSENGER CAR/VAN | OTHER FACTOR | 40 | SLOWING |
| 391 | WILD ANIMAL | E | PASSENGER CAR/VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 392 | EMBANKMENT | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 35 | SPUN OUT OF CONTROL |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 393 | 070A | 235.70 | 8/14/2011 | 1930 | PDO | 11501120 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 394 | 070A | 235.80 | 8/1/2008 | 1845 | PDO | 08311517 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 395 | 070A | 235.80 | 11/26/2008 | 1620 | PDO | 08310560 | ON | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | NONE | N |
| 396 | 070A | 235.80 | 12/26/2012 | 0945 | PDO | 12525669 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 397 | 070A | 235.90 | 6/15/2008 | 1445 | INJ | 08329823 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 398 | 070A | 235.90 | 10/21/2008 | 1640 | PDO | 08306508 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 399 | 070A | 235.90 | 2/15/2009 | 0740 | PDO | 09314755 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 400 | 070A | 235.90 | 2/15/2009 | 0740 | PDO | 09314754 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 401 | 070A | 235.90 | 1/30/2011 | 1105 | PDO | 11301727 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 402 | 070A | 235.90 | 9/3/2010 | 1630 | PDO | 10321376 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 403 | 070A | 235.90 | 8/11/2010 | 0935 | PDO | 10307986 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 404 | 070A | 235.96 | 1/22/2011 | 1820 | PDO | 11301442 | ON | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 405 | 070A | 235.96 | 1/22/2011 | 1820 | PDO | 11315550 | ON | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 406 | 070A | 236.00 | 2/3/2008 | 1545 | PDO | 08308541 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 407 | 070A | 236.00 | 1/25/2009 | 1255 | PDO | 09301629 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 408 | 070A | 236.00 | 12/14/2008 | 1130 | PDO | 08329742 | ON | NON-INTERSECTION | 2 | SNOWY | DAYLIGHT | NONE | N |
| 409 | 070A | 236.00 | 8/23/2012 | 1445 | PDO | 12515931 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 410 | 070A | 236.00 | 7/10/2012 | 1426 | PDO | 12513079 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 411 | 070A | 236.10 | 2/15/2009 | 0740 | PDO | 09303132 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 412 | 070A | 236.20 | 5/1/2008 | 0919 | PDO | 08306464 | ON | NON-INTERSECTION | 2 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 413 | 070A | 236.20 | 12/30/2009 | 1520 | PDO | 09326230 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 414 | 070A | 236.20 | 6/30/2012 | 1715 | PDO | 12511947 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 415 | 070A | 236.30 | 6/26/2009 | 1920 | PDO | 09308069 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 416 | 070A | 236.30 | 2/22/2009 | 0710 | PDO | 09303128 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 417 | 070A | 236.30 | 3/8/2009 | 1245 | PDO | 09303707 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 418 | 070A | 236.30 | 1/3/2011 | 0850 | PDO | 11300061 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 419 | 070A | 236.30 | 1/22/2011 | 1840 | PDO | 11301479 | ON | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 420 | 070A | 236.30 | 8/30/2012 | 1435 | PDO | 12516996 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | RAIN | N |
| 421 | 070A | 236.30 | 8/30/2012 | 1435 | INJ | 12516320 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 422 | 070A | 236.40 | 7/1/2012 | 1135 | PDO | 12511943 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 423 | 070A | 236.40 | 9/16/2012 | 1335 | PDO | 12517506 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 424 | 070A | 236.48 | 7/23/2010 | 1050 | PDO | 10311003 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 425 | 070A | 236.48 | 7/23/2010 | 1050 | PDO | 10311002 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 426 | 070A | 236.50 | 2/29/2008 | 0850 | PDO | 08312354 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 427 | 070A | 236.50 | 11/27/2010 | 0920 | PDO | 10315532 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 428 | 070A | 236.50 | 2/4/2008 | 1730 | PDO | 08309099 | OFF RIGHT | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 429 | 070A | 236.50 | 1/22/2011 | 1710 | PDO | 11301441 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 430 | 070A | 236.60 | 9/27/2008 | 1315 | PDO | 08315268 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 431 | 070A | 236.60 | 3/11/2011 | 0910 | PDO | 11312581 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 432 | 070A | 236.60 | 1/17/2011 | 1620 | INJ | 11312277 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 433 | 070A | 236.60 | 9/11/2008 | 1835 | INJ | 08306495 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAWN OR DUSK | RAIN | N |
| 434 | 070A | 236.70 | 2/2/2009 | 0848 | INJ | 09302116 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 435 | 070A | 236.70 | 9/7/2011 | 1415 | PDO | 11508844 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 436 | 070A | 236.80 | 5/12/2010 | 0720 | INJ | 10311619 | OFF RIGHT | NON-INTERSECTION | 1 | SLUSHY | DAYLIGHT | NONE | N |
| 437 | 070A | 236.80 | 12/19/2012 | 0935 | INJ | 12524957 | ON | NON-INTERSECTION | 2 | ICY W/VIS ICY ROAD TREATMENT | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 438 | 070A | 236.80 | 1/13/2010 | 2259 | INJ | 10322912 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 439 | 070A | 236.90 | 6/19/2011 | 1325 | PDO | 11310686 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 440 | 070A | 236.90 | 10/31/2009 | 2040 | PDO | 09324276 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 441 | 070A | 236.90 | 7/6/2010 | 2321 | PDO | 10306376 | OFF LEFT | NON-INTERSECTION | 1 | WET | DARK-UNLIGHTED | RAIN | N |
| 442 | 070A | 237.00 | 2/2/2008 | 1744 | PDO | 08312399 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 443 | 070A | 237.00 | 8/12/2012 | 1715 | PDO | 12515749 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 444 | 070A | 237.00 | 1/7/2010 | 0900 | PDO | 10323380 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 445 | 070A | 237.00 | 2/19/2010 | 0937 | PDO | 10301325 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | NONE | N |
| 446 | 070A | 237.00 | 12/30/2010 | 2045 | PDO | 10318899 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 447 | 070A | 237.10 | 9/11/2008 | 0700 | PDO | 08308591 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 448 | 070A | 237.10 | 7/15/2011 | 1200 | PDO | 11311699 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 393 | EMBANKMENT | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 65 | SPUN OUT OF CONTROL |
| 394 | REAR END | W | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 395 | REAR END | E | PICKUP TRUCK/UTILITY VAN | OTHER FACTOR | 55 | GOING STRAIGHT |
| 396 | REAR END | W | SUV | DRIVER INEXPERIENCE | 55 | GOING STRAIGHT |
| 397 | REAR END | E | MOTORCYCLE | DRIVER UNFAMILIAR W/AREA | 60 | GOING STRAIGHT |
| 398 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 399 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 400 | REAR END | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 401 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 45 | SLOWING |
| 402 | SIDESWIPE (SAME DIRECTION) | W | SUV | NONE APPARENT | 35 | GOING STRAIGHT |
| 403 | LARGE ROCKS/BOULDER | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 404 | REAR END | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 60 | SPUN OUT OF CONTROL |
| 405 | REAREND | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 60 | SPUN OUT OF CONTROL |
| 406 | REAR END | E | SUV | NONE APPARENT | 5 | GOING STRAIGHT |
| 407 | REAR END | E | SUV | NONE APPARENT | 40 | GOING STRAIGHT |
| 408 | SIDESWIPE (SAME DIRECTION) | W | PASSENGER CAR/VAN | NONE APPARENT | 40 | CHANGING LANES |
| 409 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 410 | EMBANKMENT | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 411 | REAR END | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 65 | SLOWING |
| 412 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 0 | STOPPED IN TRAFFIC |
| 413 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 45 | AVOIDING OBJECT IN ROAD |
| 414 | WILD ANIMAL | E | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 415 | OVERTURNING | W | PICKUP TRUCK/UTILITY VAN W/TRAILER | NONE APPARENT | 60 | GOING STRAIGHT |
| 416 | REAR END | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 55 | GOING STRAIGHT |
| 417 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 418 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 419 | REAR END | W | SUV | NONE APPARENT | 35 | SLOWING |
| 420 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 70 | GOING STRAIGHT |
| 421 | EMBANKMENT | W | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 70 | SPUN OUT OF CONTROL |
| 422 | REAREND | W | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 15 | GOING STRAIGHT |
| 423 | REAR END | E | PASSENGER CAR/VAN | ASLEEP AT THE WHEEL | 45 | GOING STRAIGHT |
| 424 | REAR END | W | PICKUP TRUCK/UTILITY VAN | DISTRACTED/OTHER | 45 | GOING STRAIGHT |
| 425 | REAR END | W | PASSENGER CAR/VAN | DISTRACTED/OTHER | 60 | GOING STRAIGHT |
| 426 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 427 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 25 | GOING STRAIGHT |
| 428 | GUARD RAIL | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 429 | GUARD RAIL | W | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 430 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 431 | REAR END | W | SUV | DRIVER UNFAMILIAR W/AREA | 50 | GOING STRAIGHT |
| 432 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 433 | EMBANKMENT | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 434 | EMBANKMENT | E | PASSENGER CAR/VAN | DRIVER FATIGUE | 60 | GOING STRAIGHT |
| 435 | EMBANKMENT | W | PASSENGER CAR/VAN W/TRAILER | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 436 | OVERTURNING | W | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 437 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 438 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 80 | SPUN OUT OF CONTROL |
| 439 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 440 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 65 | SPUN OUT OF CONTROL |
| 441 | GUARD RAIL | W | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 65 | SPUN OUT OF CONTROL |
| 442 | REAR END | E | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 443 | REAR END | E | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 30 | GOING STRAIGHT |
| 444 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 445 | GUARD RAIL | W | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 446 | EMBANKMENT | E | SUV | DRIVER UNFAMILIAR W/AREA | 55 | SPUN OUT OF CONTROL |
| 447 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | CHANGING LANES |
| 448 | REAR END | W | SUV | DRIVER INEXPERIENCE | 50 | AVOIDING OBJECT IN ROAD |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 449 | 070A | 237.10 | 10/3/2011 | 1308 | PDO | 11503610 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 450 | 070A | 237.10 | 10/23/2011 | 1913 | PDO | 11504845 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 451 | 070A | 237.10 | 4/3/2012 | 0801 | PDO | 12506372 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 452 | 070A | 237.10 | 12/16/2009 | 0921 | PDO | 09320744 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 453 | 070A | 237.20 | 3/19/2009 | 0530 | PDO | 09304610 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 454 | 070A | 237.20 | 3/19/2011 | 0415 | PDO | 11304954 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 455 | 070A | 237.20 | 1/5/2010 | 1835 | PDO | 10325736 | ON | NON-INTERSECTION | 3 | DRY | DARK-UNLIGHTED | NONE | N |
| 456 | 070A | 237.20 | 1/26/2008 | 1645 | PDO | 08308602 | ON | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | NONE | N |
| 457 | 070A | 237.20 | 12/30/2008 | 0900 | PDO | 08303374 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | WIND | N |
| 458 | 070A | 237.20 | 2/14/2010 | 0820 | PDO | 10301590 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 459 | 070A | 237.20 | 2/2/2011 | 1730 | PDO | 11307945 | ON | NON-INTERSECTION | 2 | ICY | DAWN OR DUSK | NONE | N |
| 460 | 070A | 237.20 | 7/15/2011 | 1145 | PDO | 11311493 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 461 | 070A | 237.20 | 7/27/2012 | 1850 | PDO | 12514441 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 462 | 070A | 237.20 | 10/10/2010 | 1437 | PDO | 10314053 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 463 | 070A | 237.20 | 3/13/2011 | 0805 | PDO | 11304655 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 464 | 070A | 237.20 | 3/19/2009 | 0652 | PDO | 09329126 | OFF RIGHT | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | NONE | N |
| 465 | 070A | 237.20 | 2/14/2010 | 0820 | PDO | 10300954 | OFF RIGHT | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 466 | 070A | 237.20 | 2/14/2010 | 0820 | PDO | 10300953 | OFF RIGHT | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 467 | 070A | 237.20 | 9/21/2012 | 2050 | PDO | 12518340 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 468 | 070A | 237.20 | 5/19/2012 | 1500 | PDO | 12509189 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 469 | 070A | 237.20 | 3/3/2008 | 0755 | PDO | 08307748 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 470 | 070A | 237.20 | 2/2/2011 | 1725 | INJ | 11307964 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | NONE | N |
| 471 | 070A | 237.30 | 12/15/2011 | 1715 | PDO | 11512214 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 472 | 070A | 237.30 | 7/25/2009 | 1710 | PDO | 09316441 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | NONE | N |
| 473 | 070A | 237.30 | 2/14/2010 | 0820 | PDO | 10301588 | ON | NON-INTERSECTION | 3 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 474 | 070A | 237.30 | 12/12/2009 | 2230 | PDO | 09320060 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 475 | 070A | 237.30 | 2/14/2010 | 0850 | PDO | 10300914 | OFF RIGHT | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 476 | 070A | 237.30 | 12/1/2011 | 0740 | PDO | 11510159 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY W/VIS ICY ROAD TREATMENT | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 477 | 070A | 237.30 | 11/8/2008 | 2210 | PDO | 08304449 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 478 | 070A | 237.30 | 12/3/2011 | 0830 | PDO | 11510389 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY W/VIS ICY ROAD TREATMENT | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 479 | 070A | 237.30 | 1/10/2011 | 0803 | PDO | 11301388 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 480 | 070A | 237.40 | 12/22/2010 | 1540 | PDO | 10317790 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 481 | 070A | 237.40 | 12/25/2008 | 1930 | PDO | 08328061 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 482 | 070A | 237.40 | 12/30/2008 | 2055 | PDO | 08331317 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 483 | 070A | 237.40 | 11/27/2010 | 0200 | PDO | 10315946 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 484 | 070A | 237.40 | 1/6/2012 | 2120 | PDO | 12500322 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 485 | 070A | 237.40 | 12/11/2012 | 1140 | PDO | 12523968 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 486 | 070A | 237.49 | 12/19/2009 | 1620 | PDO | 09323728 | ON | INTERSECTION RELATED | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{N})$ |
| 487 | 070A | 237.50 | 8/3/2008 | 1255 | PDO | 08315263 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 488 | 070A | 237.50 | 2/20/2009 | 1915 | PDO | 09303322 | ON | NON-INTERSECTION | 3 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 489 | 070A | 237.50 | 2/20/2009 | 1910 | PDO | 09303315 | ON | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 490 | 070A | 237.50 | 12/23/2012 | 0040 | PDO | 12525294 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 491 | 070A | 237.50 | 2/20/2009 | 1910 | PDO | 09316427 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 492 | 070A | 237.50 | 2/20/2009 | 1913 | PDO | 09303321 | OFF LEFT | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 493 | 070A | 237.50 | 2/3/2011 | 1632 | PDO | 11307965 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DARK-UNLIGHTED | NONE | N |
| 494 | 070A | 237.50 | 10/26/2011 | 1705 | PDO | 11504668 | OFF LEFT | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 495 | 070A | 237.50 | 10/31/2008 | 0919 | PDO | 08304138 | OFF LEFT | NON-INTERSECTION | 1 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 496 | 070A | 237.50 | 8/4/2011 | 2120 | PDO | 11500203 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 497 | 070A | 237.51 | 7/5/2009 | 0313 | INJ | 09313669 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 498 | 070A | 237.54 | 4/26/2008 | 0550 | PDO | 08304108 | OFF LEFT | NON-INTERSECTION |  | ICY | DAWN OR DUSK | NONE | N |
| 499 | 070A | 237.60 | 2/3/2010 | 0515 | INJ | 10323385 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 500 | 070A | 237.60 | 4/3/2008 | 0830 | PDO | 08306447 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 501 | 070A | 237.60 | 4/26/2009 | 0415 | PDO | 09306638 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | NONE | N |
| 502 | 070A | 237.60 | 12/11/2009 | 1940 | PDO | 09323724 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 503 | 070A | 237.60 | 5/7/2010 | 0515 | PDO | 10303998 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | NONE | N |
| 504 | 070A | 237.60 | 11/3/2011 | 0930 | PDO | 11505826 | ON | RAMP | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{J})$ |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 449 | REAR END | W | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 450 | REAR END | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 65 | GOING STRAIGHT |
| 451 | SIDESWIPE (SAME DIRECTION) | E | SUV | DRIVER INEXPERIENCE | 55 | SPUN OUT OF CONTROL |
| 452 | GUARD RAIL | W | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 65 | GOING STRAIGHT |
| 453 | OVERTURNING | E | PASSENGER CAR/VAN | DUI, DWAI, DUID | 75 | GOING STRAIGHT |
| 454 | OVERTURNING | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 70 | GOING STRAIGHT |
| 455 | OTHER NON-COLLISION | E | PASSENGER CAR/VAN | NONE APPARENT | 70 | SPUN OUT OF CONTROL |
| 456 | REAR END | E | PICKUP TRUCK/UTILITY VAN | ILLNESS/MEDICAL | UK | DROVE WRONG WAY |
| 457 | REAR END | W | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 458 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 15 | GOING STRAIGHT |
| 459 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 460 | REAR END | W | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 461 | REAR END | W | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 462 | SIDESWIPE (SAME DIRECTION) | E | SUV | DUI, DWAI, DUID | 65 | CHANGING LANES |
| 463 | SIDESWIPE (SAME DIRECTION) | W | SUV | NONE APPARENT | 40 | SPUN OUT OF CONTROL |
| 464 | PARKED MOTOR VEHICLE | E | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 465 | PARKED MOTOR VEHICLE | W | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 466 | PARKED MOTOR VEHICLE | W | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 467 | WILD ANIMAL | E | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 468 | GUARD RAIL | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 65 | SPUN OUT OF CONTROL |
| 469 | EMBANKMENT | E | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 470 | EMBANKMENT | W | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 471 | SIDESWIPE (SAME DIRECTION) | E | HIT \& RUN - UNKNOWN | NONE APPARENT | 65 | CHANGING LANES |
| 472 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 40 | SLOWING |
| 473 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 474 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 475 | PARKED MOTOR VEHICLE | W | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 476 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 477 | EMBANKMENT | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 80 | SPUN OUT OF CONTROL |
| 478 | EMBANKMENT | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 35 | GOING STRAIGHT |
| 479 | LARGE ROCKS/BOULDER | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 55 | SPUN OUT OF CONTROL |
| 480 | OVERTURNING | E | SUV | ASLEEP AT THE WHEEL | 55 | GOING STRAIGHT |
| 481 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 482 | GUARD RAIL | E | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 483 | GUARD RAIL | E | PASSENGER CAR/VAN | DUI, DWAI, DUID | 80 | SPUN OUT OF CONTROL |
| 484 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 75 | SPUN OUT OF CONTROL |
| 485 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 70 | SPUN OUT OF CONTROL |
| 486 | BROADSIDE | W | PASSENGER CAR/VAN | DUI, DWAI, DUID | 50 | MAKING RIGHT TURN |
| 487 | REAR END | E | PICKUP TRUCK/UTILITY VAN | DISTRACTED/OTHER | 20 | GOING STRAIGHT |
| 488 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 489 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 60 | STOPPED IN TRAFFIC |
| 490 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 491 | GUARD RAIL | E | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 492 | GUARD RAIL | E | SUV | NONE APPARENT | 60 | AVOIDING OBJECT IN ROAD |
| 493 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 494 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 495 | OVERTURNING | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 496 | INVOLVING OTHER OBJECT | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | UK | SPUN OUT OF CONTROL |
| 497 | OVERTURNING | E | PASSENGER CAR/VAN | DUI, DWAI, DUID | 90 | SPUN OUT OF CONTROL |
| 498 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 499 | SIDESWIPE (SAME DIRECTION) | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | PASSING |
| 500 | GUARD RAIL | W | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 501 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 502 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 80 | SPUN OUT OF CONTROL |
| 503 | GUARD RAIL | W | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 504 | REAR END | W | SUV | DUI, DWAI, DUID | 30 | GOING STRAIGHT |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 505 | 070A | 237.66 | 3/11/2009 | 1430 | INJ | 09304206 | ON | AT INTERSECTION | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{N})$ |
| 506 | 070A | 237.70 | 5/29/2009 | 2335 | PDO | 09316562 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 507 | 070A | 237.70 | 12/6/2008 | 0738 | PDO | 08301076 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | WIND | N |
| 508 | 070A | 237.70 | 3/29/2011 | 0830 | PDO | 11315636 | ON | NON-INTERSECTION | 3 | WET | DAYLIGHT | NONE | N |
| 509 | 070A | 237.70 | 10/23/2011 | 1942 | PDO | 11504528 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 510 | 070A | 237.70 | 3/5/2008 | 0603 | PDO | 08330097 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 511 | 070A | 237.80 | 2/17/2009 | 2355 | PDO | 09302759 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 512 | 070A | 237.80 | 3/30/2008 | 1545 | PDO | 08312151 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 513 | 070A | 237.80 | 12/30/2008 | 0900 | PDO | 08303403 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 514 | 070A | 237.80 | 11/9/2010 | 1735 | PDO | 10319500 | ON | NON-INTERSECTION | 2 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 515 | 070A | 237.80 | 4/26/2010 | 0720 | PDO | 10303304 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | NONE | N |
| 516 | 070A | 237.80 | 4/26/2010 | 0720 | PDO | 10303305 | OFF RIGHT | NON-INTERSECTION | 2 | ICY | DAWN OR DUSK | NONE | N |
| 517 | 070A | 237.90 | 12/17/2010 | 1153 | PDO | 10317242 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 518 | 070A | 237.90 | 12/12/2012 | 2315 | PDO | 12524184 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 519 | 070A | 237.90 | 12/14/2012 | 1650 | PDO | 12524457 | ON | NON-INTERSECTION | 2 | WET | DAWN OR DUSK | NONE | N |
| 520 | 070A | 237.90 | 7/17/2009 | 1710 | PDO | 09309444 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 521 | 070A | 237.90 | 12/17/2010 | 1755 | PDO | 10317229 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 522 | 070A | 237.90 | 1/7/2011 | 1957 | PDO | 11301390 | OFF LEFT | NON-INTERSECTION | 1 | WET W/VIS ICY ROAD TREATMENT | DARK-UNLIGHTED | NONE | N |
| 523 | 070A | 237.94 | 12/13/2012 | 1410 | PDO | 12525053 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 524 | 070A | 238.00 | 1/8/2011 | 1805 | PDO | 11301293 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 525 | 070A | 238.00 | 4/24/2011 | 1600 | PDO | 11315601 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 526 | 070A | 238.00 | 7/10/2011 | 1800 | PDO | 11312108 | ON | NON-INTERSECTION | 3 | WET | DAYLIGHT | RAIN | N |
| 527 | 070A | 238.00 | 8/23/2008 | 2030 | PDO | 08308589 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 528 | 070A | 238.00 | 6/23/2009 | 1457 | PDO | 09308113 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 529 | 070A | 238.00 | 11/13/2010 | 1325 | PDO | 10319742 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 530 | 070A | 238.00 | 8/16/2012 | 1630 | PDO | 12515884 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 531 | 070A | 238.00 | 2/26/2008 | 1008 | PDO | 08312352 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | NONE | N |
| 532 | 070A | 238.01 | 6/24/2012 | 1245 | PDO | 12511634 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 533 | 070A | 238.10 | 2/4/2008 | 1704 | PDO | 08331067 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 534 | 070A | 238.10 | 1/21/2012 | 1700 | PDO | 12501306 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 535 | 070A | 238.10 | 6/28/2012 | 1630 | PDO | 12511848 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 536 | 070A | 238.10 | 12/23/2009 | 1530 | PDO | 09327016 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 537 | 070A | 238.10 | 11/7/2011 | 1430 | PDO | 11505796 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 538 | 070A | 238.20 | 4/13/2012 | 1940 | PDO | 12506913 | ON | NON-INTERSECTION | 3 | DRY | DARK-UNLIGHTED | NONE | N |
| 539 | 070A | 238.20 | 1/31/2011 | 1030 | INJ | 11312400 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 540 | 070A | 238.30 | 3/2/2008 | 1855 | PDO | 08310500 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 541 | 070A | 238.30 | 1/3/2011 | 0940 | PDO | 11300060 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 542 | 070A | 238.30 | 3/25/2010 | 1617 | FAT | 10309209 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 543 | 070A | 238.30 | 5/28/2008 | 0820 | PDO | 08306461 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 544 | 070A | 238.40 | 3/3/2012 | 2250 | PDO | 12504547 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | WIND | N |
| 545 | 070A | 238.40 | 4/26/2010 | 0525 | PDO | 10303310 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 546 | 070A | 238.50 | 9/5/2010 | 1820 | PDO | 10313371 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 547 | 070A | 238.50 | 12/16/2010 | 1455 | PDO | 10317352 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 548 | 070A | 238.60 | 3/12/2011 | 0750 | PDO | 11304657 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 549 | 070A | 238.60 | 1/13/2009 | 1330 | PDO | 09301759 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | WIND | N |
| 550 | 070A | 238.70 | 3/25/2011 | 2015 | PDO | 11305733 | ON | NON-INTERSECTION | 2 | DRY W/VIS ICY ROAD TREATMENT | DARK-UNLIGHTED | NONE | N |
| 551 | 070A | 238.70 | 11/26/2011 | 0730 | PDO | 11509863 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | NONE | N |
| 552 | 070A | 238.70 | 9/5/2011 | 0548 | PDO | 11508944 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 553 | 070A | 238.80 | 2/18/2011 | 2110 | PDO | 11303347 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 554 | 070A | 238.80 | 1/10/2010 | 1025 | PDO | 10326053 | OFF RIGHT | RAMP | 1 | ICY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{B})$ |
| 555 | 070A | 238.89 | 3/26/2008 | 1620 | PDO | 08311480 | ON | INTERSECTION RELATED | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{O})$ |
| 556 | 070A | 238.90 | 4/26/2010 | 0625 | PDO | 10303311 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | NONE | N |
| 557 | 070A | 238.90 | 5/24/2011 | 1452 | PDO | 11309329 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 558 | 070A | 238.90 | 4/26/2010 | 0635 | PDO | 10303317 | OFF LEFT | NON-INTERSECTION | 2 | ICY | DAWN OR DUSK | NONE | N |
| 559 | 070A | 238.90 | 5/23/2010 | 1445 | PDO | 10309334 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | WIND | N |
| 560 | 070A | 238.94 | 7/21/2011 | 0206 | PDO | 11311682 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | $\mathrm{Y}(\mathrm{A})$ |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 505 | BROADSIDE | S | PASSENGER CAR/VAN | NONE APPARENT | 5 | MAKING LEFT TURN |
| 506 | OVERTURNING | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 65 | GOING STRAIGHT |
| 507 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 508 | REAR END | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 50 | GOING STRAIGHT |
| 509 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 510 | GUARD RAIL | E | SUV | DRIVER FATIGUE | 55 | GOING STRAIGHT |
| 511 | GUARD RAIL | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | AVOIDING OBJECT IN ROAD |
| 512 | REAR END | E | SUV | NONE APPARENT | 10 | GOING STRAIGHT |
| 513 | REAR END | W | SUV | NONE APPARENT | 50 | SLOWING |
| 514 | SIDESWIPE (SAME DIRECTION) | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 515 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 516 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 517 | OVERTURNING | E | SUV | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 518 | OVERTURNING | E | PASSENGER CAR/VAN | NONE APPARENT | 75 | SPUN OUT OF CONTROL |
| 519 | REAR END | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | GOING STRAIGHT |
| 520 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 65 | WEAVING |
| 521 | GUARD RAIL | W | PASSENGER CAR/VAN | DUI, DWAI, DUID | 65 | MAKING RIGHT TURN |
| 522 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 65 | SPUN OUT OF CONTROL |
| 523 | OVERTURNING | W | SUV | ILLNESS/MEDICAL | 65 | GOING STRAIGHT |
| 524 | REAR END | E | SUV | DISTRACTED/OTHER | 35 | GOING STRAIGHT |
| 525 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 30 | GOING STRAIGHT |
| 526 | REAR END | E | SUV | NONE APPARENT | 20 | SLOWING |
| 527 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN W/TRAILER | NONE APPARENT | 40 | GOING STRAIGHT |
| 528 | SIDESWIPE (SAME DIRECTION) | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 529 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 40 | CHANGING LANES |
| 530 | SIDESWIPE (SAME DIRECTION) | E | HIT \& RUN - UNKNOWN | NONE APPARENT | UK | WEAVING |
| 531 | EMBANKMENT | W | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 532 | WILD ANIMAL | W | SUV | NONE APPARENT | 55 | AVOIDING OBJECT IN ROAD |
| 533 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 534 | REAR END | E | SUV | NONE APPARENT | 65 | GOING STRAIGHT |
| 535 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | CHANGING LANES |
| 536 | LIGHT/UTILITY POLE | W | SUV | DRIVER UNFAMILIAR W/AREA | 65 | SPUN OUT OF CONTROL |
| 537 | VEHICLE DEBRIS OR CARGO | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | GOING STRAIGHT |
| 538 | REAR END | W | SUV | DISTRACTED/OTHER | 20 | GOING STRAIGHT |
| 539 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | ILLNESS/MEDICAL | 30 | GOING STRAIGHT |
| 540 | OVERTURNING | E | PASSENGER CAR/VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 541 | REAR END | W | SUV | NONE APPARENT | 55 | GOING STRAIGHT |
| 542 | SIDESWIPE (SAME DIRECTION) | W | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 70 | SPUN OUT OF CONTROL |
| 543 | CONCRETE HIGHWAY BARRIER | W | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 544 | GUARD RAIL | W | SUV | DRIVER INEXPERIENCE | 60 | PASSING |
| 545 | OVERTURNING | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 546 | REAR END | E | PASSENGER CAR/VAN | DISTRACTED/PASSENGER | 15 | GOING STRAIGHT |
| 547 | SIGN | E | PASSENGER CAR/VAN | NONE APPARENT | 65 | WEAVING |
| 548 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 40 | GOING STRAIGHT |
| 549 | GUARD RAIL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 40 | CHANGING LANES |
| 550 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 551 | REAR END | W | SUV | DRIVER INEXPERIENCE | 50 | CHANGING LANES |
| 552 | GUARD RAIL | W | SUV | DISTRACTED/OTHER | 65 | SPUN OUT OF CONTROL |
| 553 | CABLE RAIL | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | GOING STRAIGHT |
| 554 | LIGHT/UTILITY POLE | E | PICKUP TRUCK/UTILITY VAN W/TRAILER | DRIVER INEXPERIENCE | 35 | SPUN OUT OF CONTROL |
| 555 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 45 | GOING STRAIGHT |
| 556 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 557 | CABLE RAIL | W | SUV W/TRAILER | NONE APPARENT | 55 | GOING STRAIGHT |
| 558 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 45 | SPUN OUT OF CONTROL |
| 559 | DELINEATOR POST | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 560 | SIGN | S | PASSENGER CAR/VAN | EVADING LAW ENFORCEMENT OFFICER | 70 | SPUN OUT OF CONTROL |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 561 | 070A | 239.00 | 3/29/2011 | 0040 | PDO | 11016072 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 562 | 070A | 239.00 | 6/21/2009 | 1910 | PDO | 09033271 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 563 | 070A | 239.00 | 12/4/2010 | 0730 | PDO | 10066972 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 564 | 070A | 239.00 | 6/5/2010 | 1300 | PDO | 10032126 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 565 | 070A | 239.00 | 4/26/2011 | 0520 | PDO | 11021623 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | NONE | N |
| 566 | 070A | 239.00 | 11/14/2008 | 0840 | PDO | 08070815 | OFF RIGHT | NON-INTERSECTION |  | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 567 | 070A | 239.00 | 12/28/2008 | 0250 | PDO | 08076984 | OFF RIGHT | NON-INTERSECTION |  | ICY | DARK-UNLIGHTED | WIND | N |
| 568 | 070A | 239.00 | 6/11/2010 | 1345 | PDO | 10031027 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 569 | 070A | 239.00 | 12/17/2010 | 1016 | PDO | 10073082 | OFF LEFT | NON-INTERSECTION | 1 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 570 | 070A | 239.00 | 5/12/2012 | 1920 | PDO | 12024431 | OFF LEFT | NON-INTERSECTION | 2 | WET | DAWN OR DUSK | RAIN | N |
| 571 | 070A | 239.00 | 10/29/2012 | 0745 | PDO | 12058665 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 572 | 070A | 239.10 | 11/27/2012 | 0601 | PDO | 12523450 | OFF LEFT | NON-INTERSECTION |  | DRY | DARK-UNLIGHTED | NONE | N |
| 573 | 070A | 239.20 | 1/6/2009 | 0156 | PDO | 09300057 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-LIGHTED | NONE | N |
| 574 | 070A | 239.20 | 5/21/2011 | 1940 | INJ | 11027500 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 575 | 070A | 239.20 | 10/22/2010 | 1240 | PDO | 10058663 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 576 | 070A | 239.20 | 8/22/2012 | 1650 | PDO | 12045391 | OFF LEFT | NON-INTERSECTION |  | WET | DAYLIGHT | RAIN | N |
| 577 | 070A | 239.20 | 4/12/2010 | 1530 | PDO | 10019759 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 578 | 070A | 239.22 | 5/25/2009 | 1710 | PDO | 09027478 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 579 | 070A | 239.25 | 12/1/2008 | 0110 | PDO | 08076966 | ON | NON-INTERSECTION | 1 | WET | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 580 | 070A | 239.27 | 3/13/2011 | 0855 | PDO | 11014340 | ON | NON-INTERSECTION | 2 | SLUSHY | DAWN OR DUSK | NONE | N |
| 581 | 070A | 239.30 | 4/17/2008 | 0805 | PDO | 08030227 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 582 | 070A | 239.30 | 4/17/2008 | 0615 | PDO | 08030225 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | NONE | N |
| 583 | 070A | 239.30 | 3/15/2010 | 1020 | PDO | 10301913 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | NONE | N |
| 584 | 070A | 239.38 | 9/18/2008 | 1910 | INJ | 08052683 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 585 | 070A | 239.40 | 4/16/2008 | 2100 | PDO | 08030224 | OFF LEFT | NON-INTERSECTION | 1 | SLUSHY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 586 | 070A | 239.40 | 9/8/2010 | 1720 | PDO | 10074545 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 587 | 070A | 239.46 | 1/9/2012 | 1840 | PDO | 12002075 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | NONE | N |
| 588 | 070A | 239.48 | 1/8/2011 | 1850 | PDO | 11000556 | ON | NON-INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | N |
| 589 | 070A | 239.50 | 7/7/2012 | 2230 | PDO | 12039746 | ON | NON-INTERSECTION | 2 | WET | DARK-LIGHTED | RAIN | N |
| 590 | 070A | 239.50 | 6/20/2009 | 1440 | PDO | 09076348 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 591 | 070A | 239.50 | 8/15/2010 | 1800 | PDO | 10044443 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 592 | 070A | 239.50 | 10/31/2012 | 1945 | PDO | 12520793 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-LIGHTED | NONE | N |
| 593 | 070A | 239.50 | 10/5/2008 | 1815 | PDO | 08064328 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 594 | 070A | 239.50 | 1/29/2009 | 1435 | INJ | 09005536 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 595 | 070A | 239.50 | 3/24/2010 | 1105 | PDO | 10027234 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | NONE | N |
| 596 | 070A | 239.50 | 4/7/2010 | 0650 | PDO | 10018234 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 597 | 070A | 239.50 | 6/13/2010 | 2046 | PDO | 10032127 | OFF LEFT | NON-INTERSECTION | 1 | WET | DARK-LIGHTED | RAIN | N |
| 598 | 070A | 239.50 | 8/14/2011 | 1925 | PDO | 11048157 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAWN OR DUSK | RAIN | N |
| 599 | 070A | 239.58 | 4/3/2012 | 0815 | PDO | 12015653 | OFF LEFT | RAMP | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | $\mathrm{Y}(\mathrm{B})$ |
| 600 | 070A | 239.60 | 7/5/2012 | 1520 | PDO | 12041008 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 601 | 070A | 239.61 | 2/26/2008 | 1050 | INJ | 08014166 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | NONE | N |
| 602 | 070A | 239.64 | 6/1/2009 | 0655 | INJ | 09033261 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 603 | 070A | 239.64 | 6/23/2009 | 1455 | PDO | 09033266 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 604 | 070A | 239.65 | 4/17/2008 | 0700 | PDO | 08304116 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 605 | 070A | 239.65 | 10/11/2010 | 1541 | INJ | 10058664 | ON | AT INTERSECTION | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{O})$ |
| 606 | 070A | 239.65 | 10/16/2010 | 2050 | PDO | 10058670 | ON | AT INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | $\mathrm{Y}(\mathrm{O})$ |
| 607 | 070A | 239.65 | 10/31/2010 | 1640 | PDO | 10065041 | ON | AT INTERSECTION | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{O})$ |
| 608 | 070A | 239.70 | 9/28/2008 | 1500 | PDO | 08058509 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 609 | 070A | 239.70 | 7/5/2010 | 1940 | PDO | 10036480 | ON | NON-INTERSECTION | 3 | DRY | DAWN OR DUSK | NONE | N |
| 610 | 070A | 239.70 | 7/29/2012 | 1740 | PDO | 12040672 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 611 | 070A | 239.70 | 5/24/2008 | 1609 | PDO | 08035710 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 612 | 070A | 239.75 | 5/22/2012 | 0135 | PDO | 12025331 | ON | NON-INTERSECTION | 1 | DRY | DARK-LIGHTED | NONE | N |
| 613 | 070A | 239.78 | 4/4/2009 | 0600 | PDO | 09021416 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 614 | 070A | 239.80 | 3/14/2009 | 0800 | PDO | 09015526 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 615 | 070A | 239.80 | 11/19/2008 | 2130 | PDO | 08070814 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 616 | 070A | 239.80 | 4/17/2008 | 0005 | PDO | 08030218 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 561 | OVERTURNING | W | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 562 | REAR END | E | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 40 | SLOWING |
| 563 | REAR END | W | PASSENGER CAR/VAN | OTHER FACTOR | 20 | STOPPED IN TRAFFIC |
| 564 | SIGN | W | SUV | ASLEEP AT THE WHEEL | 60 | GOING STRAIGHT |
| 565 | SIGN | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 566 | CONCRETE HIGHWAY BARRIER | W | SUV | DRIVER INEXPERIENCE | 60 | GOING STRAIGHT |
| 567 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 70 | GOING STRAIGHT |
| 568 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 60 | GOING STRAIGHT |
| 569 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 570 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | OTHER FACTOR | UK | SPUN OUT OF CONTROL |
| 571 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | UK | GOING STRAIGHT |
| 572 | CABLE RAIL | E | PASSENGER CAR/VAN | DUI, DWAI, DUID | 60 | GOING STRAIGHT |
| 573 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 82 | AVOIDING OBJECT IN ROAD |
| 574 | GUARD RAIL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 575 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 576 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 577 | VEHICLE DEBRIS OR CARGO | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 60 | GOING STRAIGHT |
| 578 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 579 | WILD ANIMAL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 580 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 30 | SLOWING |
| 581 | LIGHT/UTILITY POLE | W | PASSENGER CAR/VAN | NONE APPARENT | 45 | SLOWING |
| 582 | EMBANKMENT | W | PICKUP TRUCK/UTILITY VAN | OTHER FACTOR | 45 | SPUN OUT OF CONTROL |
| 583 | TREE | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 40 | SPUN OUT OF CONTROL |
| 584 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 60 | CHANGING LANES |
| 585 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | ILLNESS/MEDICAL | 60 | GOING STRAIGHT |
| 586 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN W/TRAILER | NONE APPARENT | UK | GOING STRAIGHT |
| 587 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 50 | SPUN OUT OF CONTROL |
| 588 | SIDESWIPE (SAME DIRECTION) | E | SUV | DUI, DWAI, DUID | 10 | WEAVING |
| 589 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 60 | WEAVING |
| 590 | SIDESWIPE (SAME DIRECTION) | W | PASSENGER CAR/VAN | OTHER FACTOR | 55 | GOING STRAIGHT |
| 591 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | PASSING |
| 592 | GUARD RAIL | E | SUV | DRIVER UNFAMILIAR W/AREA | 55 | AVOIDING OBJECT IN ROAD |
| 593 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 60 | GOING STRAIGHT |
| 594 | CONCRETE HIGHWAY BARRIER | E | SUV | AGRESSIVE DRIVING | 78 | GOING STRAIGHT |
| 595 | CONCRETE HIGHWAY BARRIER | E | SUV | NONE APPARENT | 62 | GOING STRAIGHT |
| 596 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | DRIVER INEXPERIENCE | 50 | GOING STRAIGHT |
| 597 | CONCRETE HIGHWAY BARRIER | E | PICKUP TRUCK/UTILITY VAN | OTHER FACTOR | 55 | GOING STRAIGHT |
| 598 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | SPUN OUT OF CONTROL |
| 599 | SIGN | E | SCHOOL BUS (ALL SCHOOL BUSSES) | NONE APPARENT | 20 | CHANGING LANES |
| 600 | CONCRETE HIGHWAY BARRIER | S | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | MAKING RIGHT TURN |
| 601 | GUARD RAIL | E | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 65 | GOING STRAIGHT |
| 602 | GUARD RAIL | E | PASSENGER CAR/VAN | ILLNESS/MEDICAL | 45 | SPUN OUT OF CONTROL |
| 603 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 604 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 605 | BROADSIDE | E | SUV | OTHER FACTOR | 10 | MAKING LEFT TURN |
| 606 | BROADSIDE | E | SUV | NONE APPARENT | 5 | MAKING LEFT TURN |
| 607 | BROADSIDE | E | SUV | DRIVER UNFAMILIAR W/AREA | 15 | GOING STRAIGHT |
| 608 | REAR END | W | PASSENGER CAR/VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 609 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 15 | SLOWING |
| 610 | REAR END | E | SUV | DISTRACTED/OTHER | 20 | GOING STRAIGHT |
| 611 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 40 | GOING STRAIGHT |
| 612 | WILD ANIMAL | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 613 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 614 | REAR END | W | SUV | DRIVER INEXPERIENCE | 55 | GOING STRAIGHT |
| 615 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 616 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 40 | CHANGING LANES |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 617 | 070A | 239.80 | 7/29/2009 | 1850 | PDO | 09041481 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 618 | 070A | 239.80 | 7/21/2010 | 1553 | PDO | 10310803 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 619 | 070A | 239.80 | 4/30/2011 | 1200 | PDO | 11050531 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 620 | 070A | 239.85 | 3/11/2011 | 1740 | PDO | 11014338 | ON | NON-INTERSECTION | 2 | DRY | DAWN OR DUSK | NONE | N |
| 621 | 070A | 239.85 | 9/14/2012 | 1531 | INJ | 12049491 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 622 | 070A | 239.87 | 5/1/2011 | 1355 | PDO | 11023357 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 623 | 070A | 239.90 | 2/15/2008 | 1010 | PDO | 08012312 | ON | NON-INTERSECTION | 6 | DRY | DAYLIGHT | NONE | N |
| 624 | 070A | 239.90 | 2/12/2012 | 0556 | PDO | 12008449 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 625 | 070A | 239.90 | 2/14/2010 | 0915 | PDO | 10008938 | OFF RIGHT | NON-INTERSECTION | , | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 626 | 070A | 239.90 | 4/17/2008 | 0734 | PDO | 08030226 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 627 | 070A | 239.90 | 6/10/2009 | 0650 | PDO | 09033263 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | NONE | N |
| 628 | 070A | 239.94 | 7/26/2008 | 1615 | INJ | 08047237 | OFF RIGHT | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 629 | 070A | 240.00 | 2/23/2008 | 1000 | PDO | 08010652 | ON | NON-INTERSECTION | 5 | DRY | DAYLIGHT | NONE | N |
| 630 | 070A | 240.00 | 12/6/2008 | 1845 | PDO | 08076971 | ON | NON-INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | N |
| 631 | 070A | 240.00 | 1/10/2009 | 1915 | PDO | 09300544 | ON | NON-INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | N |
| 632 | 070A | 240.00 | 7/27/2009 | 1225 | PDO | 09039764 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 633 | 070A | 240.00 | 7/25/2011 | 1605 | PDO | 11043101 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 634 | 070A | 240.00 | 10/1/2011 | 1620 | PDO | 11053890 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 635 | 070A | 240.00 | 11/25/2011 | 1340 | PDO | 11067348 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 636 | 070A | 240.00 | 3/4/2012 | 1610 | PDO | 12011901 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 637 | 070A | 240.00 | 8/28/2012 | 1420 | PDO | 12046815 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 638 | 070A | 240.00 | 7/7/2010 | 1500 | PDO | 10038536 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 639 | 070A | 240.00 | 9/14/2011 | 1050 | PDO | 11050547 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 640 | 070A | 240.00 | 10/18/2009 | 0320 | PDO | 09058996 | ON | NON-INTERSECTION |  | DRY | DARK-LIGHTED | NONE | N |
| 641 | 070A | 240.00 | 7/14/2009 | 1515 | PDO | 09036632 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 642 | 070A | 240.00 | 4/26/2010 | 0555 | PDO | 10022077 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | NONE | N |
| 643 | 070A | 240.00 | 12/30/2010 | 1930 | PDO | 10073658 | OFF RIGHT | NON-INTERSECTION |  | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 644 | 070A | 240.00 | 10/13/2008 | 0340 | PDO | 08064336 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 645 | 070A | 240.00 | 10/13/2008 | 0345 | PDO | 08064361 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 646 | 070A | 240.00 | 4/26/2010 | 0445 | PDO | 10022073 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 647 | 070A | 240.00 | 8/3/2010 | 2120 | PDO | 10041594 | OFF LEFT | NON-INTERSECTION | 1 | WET | DARK-LIGHTED | RAIN | N |
| 648 | 070A | 240.00 | 12/3/2011 | 0605 | PDO | 11067347 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 649 | 070A | 240.00 | 11/2/2010 | 0942 | PDO | 10060416 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 650 | 070A | 240.00 | 2/22/2010 | 1043 | PDO | 10009373 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 651 | 070A | 240.03 | 2/22/2010 | 1023 | PDO | 10015580 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | NONE | N |
| 652 | 070A | 240.10 | 6/25/2012 | 1430 | PDO | 12034437 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 653 | 070A | 240.10 | 7/15/2009 | 0600 | PDO | 09041479 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 654 | 070A | 240.10 | 2/4/2008 | 1655 | PDO | 08027115 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 655 | 070A | 240.10 | 6/25/2012 | 1420 | PDO | 12034436 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 656 | 070A | 240.10 | 2/5/2008 | 1045 | PDO | 08007646 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 657 | 070A | 240.10 | 1/19/2011 | 0830 | PDO | 11001704 | OFF LEFT | NON-INTERSECTION | 1 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 658 | 070A | 240.10 | 9/4/2011 | 0155 | PDO | 11050543 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 659 | 070A | 240.10 | 1/12/2012 | 1845 | PDO | 12002073 | OFF LEFT | NON-INTERSECTION | 1 | DRY W/VIS ICY ROAD TREATMENT | DARK-UNLIGHTED | NONE | N |
| 660 | 070A | 240.10 | 1/7/2008 | 2030 | PDO | 08001437 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 661 | 070A | 240.11 | 2/5/2008 | 1025 | PDO | 08008246 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | NONE | N |
| 662 | 070A | 240.20 | 8/14/2011 | 1410 | PDO | 11046614 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 663 | 070A | 240.20 | 4/4/2009 | 0705 | PDO | 09021420 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 664 | 070A | 240.20 | 8/28/2011 | 0505 | PDO | 11045404 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 665 | 070A | 240.20 | 4/15/2010 | 0530 | PDO | 10021250 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 666 | 070A | 240.25 | 3/5/2010 | 0900 | PDO | 10010732 | ON | NON-INTERSECTION | 4 | ICY | DAYLIGHT | NONE | N |
| 667 | 070A | 240.30 | 7/1/2009 | 2130 | PDO | 09076347 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 668 | 070A | 240.30 | 8/14/2012 | 0600 | INJ | 12042651 | OFF RIGHT | NON-INTERSECTION |  | DRY | DAWN OR DUSK | NONE | N |
| 669 | 070A | 240.40 | 7/11/2009 | 1135 | PDO | 09039759 | OFF RIGHT | NON-INTERSECTION |  | DRY | DAYLIGHT | NONE | N |
| 670 | 070A | 240.40 | 3/29/2009 | 1448 | INJ | 09015541 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 671 | 070A | 240.50 | 3/15/2008 | 0900 | PDO | 08019372 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 672 | 070A | 240.50 | 4/13/2008 | 2025 | PDO | 08030223 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 617 | GUARD RAIL | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 60 | GOING STRAIGHT |
| 618 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | DUI, DWAI, DUID | 60 | WEAVING |
| 619 | VEHICLE DEBRIS OR CARGO | E | OTHER - SEE REPORT | NONE APPARENT | 60 | GOING STRAIGHT |
| 620 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 75 | SPUN OUT OF CONTROL |
| 621 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 622 | CONCRETE HIGHWAY BARRIER | W | SUV W/TRAILER | OTHER FACTOR | 60 | SPUN OUT OF CONTROL |
| 623 | REAR END | W | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 35 | GOING STRAIGHT |
| 624 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | AVOIDING OBJECT IN ROAD |
| 625 | SIGN | W | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 626 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 627 | CONCRETE HIGHWAY BARRIER | W | SUV | DRIVER UNFAMILIAR W/AREA | 65 | GOING STRAIGHT |
| 628 | GUARD RAIL | W | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 70 | PASSING |
| 629 | REAR END | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 35 | GOING STRAIGHT |
| 630 | REAR END | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 15 | GOING STRAIGHT |
| 631 | REAR END | W | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 50 | CHANGING LANES |
| 632 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 10 | GOING STRAIGHT |
| 633 | REAR END | E | SUV | NONE APPARENT | 25 | CHANGING LANES |
| 634 | REAR END | E | SUV | DRIVER INEXPERIENCE | 30 | GOING STRAIGHT |
| 635 | REAR END | W | SUV | AGRESSIVE DRIVING | 60 | GOING STRAIGHT |
| 636 | REAR END | E | SUV | NONE APPARENT | 15 | SLOWING |
| 637 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 638 | SIDESWIPE (SAME DIRECTION) | W | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 0 | CHANGING LANES |
| 639 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | EVADING LAW ENFORCEMENT OFFICER | 75 | SPUN OUT OF CONTROL |
| 640 | WILD ANIMAL | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 641 | GUARD RAIL | E | SUV | DISTRACTED/OTHER | 60 | GOING STRAIGHT |
| 642 | GUARD RAIL | W | SUV | DRIVER INEXPERIENCE | 60 | GOING STRAIGHT |
| 643 | GUARD RAIL | E | SUV | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 644 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 65 | GOING STRAIGHT |
| 645 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 65 | GOING STRAIGHT |
| 646 | CONCRETE HIGHWAY BARRIER | W | SUV | DRIVER INEXPERIENCE | 60 | GOING STRAIGHT |
| 647 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 70 | GOING STRAIGHT |
| 648 | CONCRETE HIGHWAY BARRIER | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 40 | WEAVING |
| 649 | VEHICLE DEBRIS OR CARGO | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 60 | GOING STRAIGHT |
| 650 | EMBANKMENT | E | PICKUP TRUCK/UTILITY VAN | OTHER FACTOR | 55 | GOING STRAIGHT |
| 651 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 652 | REAR END | E | SUV | NONE APPARENT | 20 | CHANGING LANES |
| 653 | WILD ANIMAL | E | SUV | NONE APPARENT | 50 | GOING STRAIGHT |
| 654 | GUARD RAIL | E | SUV | DRIVER UNFAMILIAR W/AREA | 40 | SPUN OUT OF CONTROL |
| 655 | GUARD RAIL | E | PASSENGER CAR/VAN | DRIVER FATIGUE | 60 | GOING STRAIGHT |
| 656 | CONCRETE HIGHWAY BARRIER | E | SUV | DRIVER UNFAMILIAR W/AREA | 50 | GOING STRAIGHT |
| 657 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 70 | SPUN OUT OF CONTROL |
| 658 | CONCRETE HIGHWAY BARRIER | E | PICKUP TRUCK/UTILITY VAN W/TRAILER | OTHER FACTOR | 70 | GOING STRAIGHT |
| 659 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 68 | GOING STRAIGHT |
| 660 | EMBANKMENT | E | SUV | OTHER FACTOR | 40 | GOING STRAIGHT |
| 661 | GUARD RAIL | E | SUV | OTHER FACTOR | 45 | SPUN OUT OF CONTROL |
| 662 | REAR END | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 30 | GOING STRAIGHT |
| 663 | GUARD RAIL | W | SUV | DRIVER INEXPERIENCE | 60 | GOING STRAIGHT |
| 664 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | ASLEEP AT THE WHEEL | 60 | GOING STRAIGHT |
| 665 | EMBANKMENT | E | VEH COMBO (10,001 LBS AND OVER) | DRIVER UNFAMILIAR W/AREA | UK | GOING STRAIGHT |
| 666 | SIDESWIPE (SAME DIRECTION) | E | SUV | AGRESSIVE DRIVING | 60 | GOING STRAIGHT |
| 667 | VEHICLE DEBRIS OR CARGO | E | HIT \& RUN - UNKNOWN | NONE APPARENT | UK | GOING STRAIGHT |
| 668 | EMBANKMENT | E | SUV | ASLEEP AT THE WHEEL | 60 | GOING STRAIGHT |
| 669 | EMBANKMENT | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 670 | OTHER FIXED OBJECT | E | PICKUP TRUCK/UTILITY VAN | DRIVER FATIGUE | 60 | GOING STRAIGHT |
| 671 | REAR END | W | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 20 | GOING STRAIGHT |
| 672 | REAR END | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 30 | SLOWING |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 673 | 070A | 240.50 | 9/5/2008 | 0815 | PDO | 08058503 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 674 | 070A | 240.50 | 6/14/2009 | 1445 | PDO | 09033265 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 675 | 070A | 240.50 | 9/7/2009 | 1730 | PDO | 09051267 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | RAIN | N |
| 676 | 070A | 240.50 | 11/8/2009 | 1550 | PDO | 09062451 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 677 | 070A | 240.50 | 11/18/2012 | 1541 | PDO | 12062835 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 678 | 070A | 240.50 | 11/14/2009 | 1500 | PDO | 09064668 | ON | NON-INTERSECTION | 2 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 679 | 070A | 240.50 | 1/12/2012 | 2028 | PDO | 12002096 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 680 | 070A | 240.50 | 3/18/2009 | 0305 | PDO | 09322570 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 681 | 070A | 240.50 | 5/9/2010 | 0655 | PDO | 10025399 | ON | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 682 | 070A | 240.50 | 9/14/2012 | 2020 | PDO | 12049490 | ON | NON-INTERSECTION | 2 | DRY | DARK-UNLIGHTED | NONE | N |
| 683 | 070A | 240.50 | 2/22/2010 | 0826 | INJ | 10009369 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 684 | 070A | 240.50 | 1/1/2011 | 2105 | PDO | 11000395 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DARK-UNLIGHTED | NONE | N |
| 685 | 070A | 240.50 | 3/5/2011 | 1735 | PDO | 11013101 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 686 | 070A | 240.50 | 6/13/2010 | 0800 | PDO | 10800028 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 687 | 070A | 240.50 | 5/4/2012 | 2012 | PDO | 12023664 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 688 | 070A | 240.50 | 3/18/2009 | 0230 | PDO | 09015524 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 689 | 070A | 240.50 | 2/1/2011 | 0600 | PDO | 11008264 | OFF RIGHT | NON-INTERSECTION |  | ICY | DAWN OR DUSK | NONE | N |
| 690 | 070A | 240.60 | 5/11/2012 | 1340 | PDO | 12024432 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 691 | 070A | 240.60 | 5/14/2008 | 1040 | PDO | 08017620 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 692 | 070A | 240.80 | 5/12/2009 | 2130 | PDO | 09027489 | ON | NON-INTERSECTION | 1 | DRY | DARK-UNLIGHTED | NONE | N |
| 693 | 070A | 240.80 | 10/7/2012 | 2320 | PDO | 12054856 | OFF LEFT | NON-INTERSECTION |  | DRY | DARK-LIGHTED | NONE | N |
| 694 | 070A | 240.80 | 11/14/2009 | 1530 | PDO | 09064767 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 695 | 070A | 240.92 | 11/14/2009 | 1750 | PDO | 09064768 | ON | NON-INTERSECTION | 2 | ICY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 696 | 070A | 241.00 | 3/30/2008 | 1805 | PDO | 08019371 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 697 | 070A | 241.00 | 4/6/2008 | 1735 | PDO | 08030237 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 698 | 070A | 241.00 | 1/16/2009 | 1850 | PDO | 09005532 | ON | NON-INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | N |
| 699 | 070A | 241.00 | 1/16/2009 | 1850 | PDO | 09005533 | ON | NON-INTERSECTION | 2 | DRY | DARK-LIGHTED | NONE | N |
| 700 | 070A | 241.00 | 1/16/2010 | 0945 | PDO | 10003051 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 701 | 070A | 241.00 | 6/27/2010 | 1400 | PDO | 10034283 | ON | NON-INTERSECTION | 5 | DRY | DAYLIGHT | NONE | N |
| 702 | 070A | 241.00 | 11/17/2010 | 1148 | PDO | 10065004 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 703 | 070A | 241.00 | 11/17/2010 | 1240 | PDO | 10065042 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 704 | 070A | 241.00 | 12/5/2010 | 1725 | PDO | 10066980 | ON | NON-INTERSECTION | 3 | DRY | DARK-LIGHTED | NONE | N |
| 705 | 070A | 241.00 | 12/11/2010 | 0653 | PDO | 10069787 | ON | NON-INTERSECTION | 2 | ICY | DAWN OR DUSK | NONE | N |
| 706 | 070A | 241.00 | 1/30/2012 | 1515 | PDO | 12003788 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 707 | 070A | 241.00 | 8/19/2012 | 1645 | PDO | 12043518 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 708 | 070A | 241.00 | 11/18/2012 | 1500 | PDO | 12062832 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 709 | 070A | 241.00 | 11/18/2012 | 1525 | PDO | 12062831 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 710 | 070A | 241.00 | 10/28/2009 | 1750 | PDO | 09324620 | ON | NON-INTERSECTION | 2 | SNOWY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 711 | 070A | 241.00 | 1/30/2009 | 1625 | PDO | 09005548 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 712 | 070A | 241.00 | 3/27/2012 | 1020 | PDO | 12018096 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 713 | 070A | 241.10 | 9/18/2010 | 1756 | PDO | 10051671 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 714 | 070A | 241.10 | 7/8/2012 | 1430 | PDO | 12039790 | ON | NON-INTERSECTION | 2 | WET | DAYLIGHT | RAIN | N |
| 715 | 070A | 241.10 | 11/18/2012 | 1550 | PDO | 12522701 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 716 | 070A | 241.10 | 10/11/2008 | 1445 | INJ | 08064333 | OFF RIGHT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 717 | 070A | 241.12 | 6/6/2012 | 1412 | PDO | 12028117 | ON | RAMP | 4 | DRY | DAYLIGHT | NONE | $Y(B)$ |
| 718 | 070A | 241.16 | 1/28/2009 | 2025 | PDO | 09005538 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DARK-LIGHTED | NONE | N |
| 719 | 070A | 241.20 | 8/2/2009 | 1205 | PDO | 09041489 | ON | NON-INTERSECTION | 7 | DRY | DAYLIGHT | NONE | N |
| 720 | 070A | 241.20 | 3/21/2012 | 1525 | PDO | 12013556 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 721 | 070A | 241.20 | 11/25/2011 | 1620 | PDO | 11065030 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 722 | 070A | 241.20 | 4/7/2011 | 1820 | PDO | 11018094 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 723 | 070A | 241.28 | 1/5/2008 | 0710 | PDO | 08001502 | ON | NON-INTERSECTION | 3 | DRY W/VIS ICY ROAD TREATMENT | DAWN OR DUSK | NONE | N |
| 724 | 070A | 241.28 | 1/5/2008 | 0710 | PDO | 08001435 | ON | NON-INTERSECTION | 2 | DRY W/VIS ICY ROAD TREATMENT | DAWN OR DUSK | NONE | N |
| 725 | 070A | 241.28 | 2/21/2010 | 1637 | PDO | 10009381 | OFF LEFT | RAMP |  | SNOWY | DAWN OR DUSK | SNOW/SLEET/HAIL | $Y(B)$ |
| 726 | 070A | 241.29 | 8/26/2009 | 1220 | PDO | 09046621 | OFF LEFT | RAMP | 1 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{H})$ |
| 727 | 070A | 241.30 | 6/6/2012 | 1510 | PDO | 12028116 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 728 | 070A | 241.30 | 11/17/2010 | 1333 | PDO | 10073656 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 673 | REAR END | W | PICKUP TRUCK/UTILITY VAN W/TRAILER | AGRESSIVE DRIVING | 60 | GOING STRAIGHT |
| 674 | REAR END | E | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 45 | CHANGING LANES |
| 675 | REAR END | E | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 10 | GOING STRAIGHT |
| 676 | REAR END | E | PICKUP TRUCK/UTILITY VAN | DRIVER INEXPERIENCE | 15 | GOING STRAIGHT |
| 677 | REAR END | E | PASSENGER CAR/VAN | DISTRACTED/RADIO | 15 | SLOWING |
| 678 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | NONE APPARENT | 10 | SPUN OUT OF CONTROL |
| 679 | SIDESWIPE (SAME DIRECTION) | E | HIT \& RUN - UNKNOWN | OTHER FACTOR | 55 | CHANGING LANES |
| 680 | PARKED MOTOR VEHICLE | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 1 | ENTERING/LEAVING PARKED POSITION |
| 681 | WILD ANIMAL | E | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 682 | WILD ANIMAL | W | SUV | NONE APPARENT | 45 | GOING STRAIGHT |
| 683 | GUARD RAIL | E | SUV | OTHER FACTOR | UK | GOING STRAIGHT |
| 684 | GUARD RAIL | E | PASSENGER CAR/VAN | NONE APPARENT | 70 | SPUN OUT OF CONTROL |
| 685 | GUARD RAIL | W | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 75 | SPUN OUT OF CONTROL |
| 686 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | SPUN OUT OF CONTROL |
| 687 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | DISTRACTED/CELL PHONE | 70 | GOING STRAIGHT |
| 688 | EMBANKMENT | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 70 | GOING STRAIGHT |
| 689 | LARGE ROCKS/BOULDER | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 60 | SPUN OUT OF CONTROL |
| 690 | OVERTURNING | E | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 65 | SPUN OUT OF CONTROL |
| 691 | OTHER NON-COLLISION | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 50 | SLOWING |
| 692 | WILD ANIMAL | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 693 | CONCRETE HIGHWAY BARRIER | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 70 | GOING STRAIGHT |
| 694 | TREE | W | SUV | NONE APPARENT | 40 | SPUN OUT OF CONTROL |
| 695 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | DRIVER INEXPERIENCE | 25 | SPUN OUT OF CONTROL |
| 696 | REAR END | E | SUV | DRIVER UNFAMILIAR W/AREA | 35 | GOING STRAIGHT |
| 697 | REAR END | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 20 | SLOWING |
| 698 | REAR END | W | PICKUP TRUCK/UTILITY VAN | DRIVER UNFAMILIAR W/AREA | 10 | SLOWING |
| 699 | REAR END | W | PICKUP TRUCK/UTILITY VAN | OTHER FACTOR | 10 | SLOWING |
| 700 | REAR END | W | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 25 | SLOWING |
| 701 | REAR END | E | PICKUP TRUCK/UTILITY VAN W/TRAILER | NONE APPARENT | 60 | GOING STRAIGHT |
| 702 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 40 | SLOWING |
| 703 | REAR END | E | PASSENGER CAR/VAN | OTHER FACTOR | 35 | GOING STRAIGHT |
| 704 | REAR END | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 20 | GOING STRAIGHT |
| 705 | REAR END | W | SUV | NONE APPARENT | 5 | SLOWING |
| 706 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 15 | GOING STRAIGHT |
| 707 | REAR END | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 20 | GOING STRAIGHT |
| 708 | REAR END | E | SUV | NONE APPARENT | 15 | GOING STRAIGHT |
| 709 | REAR END | E | SUV | DRIVER UNFAMILIAR W/AREA | 20 | STOPPED IN TRAFFIC |
| 710 | SIDESWIPE (SAME DIRECTION) | E | SUV | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 711 | LIGHT/UTILITY POLE | E | PICKUP TRUCK/UTILITY VAN | ASLEEP AT THE WHEEL | 55 | GOING STRAIGHT |
| 712 | VEHICLE DEBRIS OR CARGO | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 713 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 10 | SLOWING |
| 714 | REAR END | E | SUV | NONE APPARENT | 25 | GOING STRAIGHT |
| 715 | REAR END | E | SUV | NONE APPARENT | 30 | GOING STRAIGHT |
| 716 | LIGHT/UTILITY POLE | E | PASSENGER CAR/VAN | ILLNESS/MEDICAL | 60 | GOING STRAIGHT |
| 717 | REAR END | E | PICKUP TRUCK/UTILITY VAN | DISTRACTED/PASSENGER | 40 | CHANGING LANES |
| 718 | SIGN | W | SUV | ILLNESS/MEDICAL | 50 | GOING STRAIGHT |
| 719 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 40 | SLOWING |
| 720 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 5 | OTHER |
| 721 | WILD ANIMAL | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 55 | GOING STRAIGHT |
| 722 | CONCRETE HIGHWAY BARRIER | E | SUV | DRIVER UNFAMILIAR W/AREA | 65 | SPUN OUT OF CONTROL |
| 723 | REAR END | W | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 30 | GOING STRAIGHT |
| 724 | REAR END | W | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 30 | SLOWING |
| 725 | OTHER FIXED OBJECT | E | PASSENGER CAR/VAN | NONE APPARENT | 25 | MAKING RIGHT TURN |
| 726 | EMBANKMENT | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 50 | GOING STRAIGHT |
| 727 | REAR END | E | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 25 | SLOWING |
| 728 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | DISTRACTED/CELL PHONE | 40 | CHANGING LANES |


| \# | Hwy | MP | Date | Time | Severity | Serial \# | Location | Road Description | Vehicles | Road Condition | Lighting | Weather | Ramp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 729 | 070A | 241.30 | 11/9/2010 | 1750 | PDO | 10062186 | OFF LEFT | NON-INTERSECTION |  | ICY | DARK-LIGHTED | NONE | N |
| 730 | 070A | 241.30 | 11/9/2010 | 1750 | PDO | 10062178 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | NONE | N |
| 731 | 070A | 241.35 | 3/31/2010 | 1340 | PDO | 10027484 | ON | RAMP | 2 | DRY | DAYLIGHT | NONE | $\mathrm{Y}(\mathrm{C})$ |
| 732 | 070A | 241.50 | 1/7/2008 | 1925 | PDO | 08001439 | ON | NON-INTERSECTION | 2 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 733 | 070A | 241.50 | 3/7/2010 | 1420 | PDO | 10014917 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 734 | 070A | 241.50 | 10/26/2011 | 0730 | PDO | 11059563 | ON | NON-INTERSECTION | 7 | SNOWY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 735 | 070A | 241.50 | 10/21/2012 | 1150 | PDO | 12058489 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 736 | 070A | 241.50 | 12/14/2012 | 1700 | PDO | 12071003 | ON | NON-INTERSECTION | 2 | DRY W/VIS ICY ROAD TREATMENT | DAWN OR DUSK | NONE | N |
| 737 | 070A | 241.50 | 8/6/2012 | 1640 | PDO | 12041030 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 738 | 070A | 241.50 | 11/20/2008 | 1045 | PDO | 08317328 | ON | NON-INTERSECTION | 1 | WET | DAYLIGHT | NONE | N |
| 739 | 070A | 241.50 | 11/25/2009 | 2205 | PDO | 09069502 | ON | NON-INTERSECTION |  | DRY | DARK-UNLIGHTED | NONE | N |
| 740 | 070A | 241.50 | 2/3/2012 | 1655 | PDO | 12005931 | OFF RIGHT | NON-INTERSECTION |  | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 741 | 070A | 241.50 | 1/7/2008 | 1925 | PDO | 08001436 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 742 | 070A | 241.50 | 10/5/2008 | 1120 | PDO | 08064338 | OFF LEFT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 743 | 070A | 241.50 | 4/26/2009 | 0535 | PDO | 09021426 | OFF LEFT | NON-INTERSECTION |  | ICY | DARK-UNLIGHTED | SNOW/SLEET/HAIL | N |
| 744 | 070A | 241.50 | 5/3/2010 | 0054 | PDO | 10025395 | OFF RIGHT | NON-INTERSECTION | 1 | SLUSHY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 745 | 070A | 241.50 | 8/3/2010 | 1630 | PDO | 10041592 | OFF LEFT | NON-INTERSECTION | 1 | WET | DAYLIGHT | RAIN | N |
| 746 | 070A | 241.50 | 3/13/2011 | 0820 | PDO | 11014339 | OFF LEFT | NON-INTERSECTION | 1 | SLUSHY | DAWN OR DUSK | NONE | N |
| 747 | 070A | 241.50 | 4/26/2011 | 0305 | PDO | 11021621 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-UNLIGHTED | NONE | N |
| 748 | 070A | 241.50 | 4/26/2011 | 0400 | PDO | 11021622 | OFF LEFT | NON-INTERSECTION |  | ICY | DARK-UNLIGHTED | NONE | N |
| 749 | 070A | 241.50 | 2/3/2012 | 1719 | PDO | 12004348 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DAWN OR DUSK | SNOW/SLEET/HAIL | N |
| 750 | 070A | 241.50 | 1/10/2012 | 0755 | PDO | 12001352 | OFF RIGHT | NON-INTERSECTION | 1 | ICY | DAYLIGHT | NONE | N |
| 751 | 070A | 241.50 | 12/22/2012 | 0835 | PDO | 12071006 | OFF RIGHT | NON-INTERSECTION | 1 | DRY W/VIS ICY ROAD TREATMENT | DAWN OR DUSK | NONE | N |
| 752 | 070A | 241.50 | 12/22/2012 | 0840 | PDO | 12071005 | OFF RIGHT | NON-INTERSECTION | 1 | DRY W/VIS ICY ROAD TREATMENT | DAWN OR DUSK | NONE | N |
| 753 | 070A | 241.60 | 5/27/2009 | 0500 | PDO | 09027476 | ON | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 754 | 070A | 241.75 | 3/19/2010 | 1320 | PDO | 10014919 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 755 | 070A | 241.80 | 2/19/2010 | 1818 | PDO | 10009370 | ON | NON-INTERSECTION | 2 | ICY | DARK-LIGHTED | SNOW/SLEET/HAIL | N |
| 756 | 070A | 241.80 | 2/21/2010 | 0714 | PDO | 10009372 | OFF RIGHT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 757 | 070A | 241.82 | 12/31/2010 | 0351 | PDO | 10073661 | OFF LEFT | NON-INTERSECTION | 1 | ICY | DARK-LIGHTED | NONE | N |
| 758 | 070A | 241.88 | 11/2/2011 | 1334 | PDO | 11062200 | OFF RIGHT | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 759 | 070A | 241.90 | 2/9/2009 | 0810 | PDO | 09010681 | OFF LEFT | NON-INTERSECTION | 1 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | WIND | N |
| 760 | 070A | 242.00 | 3/2/2008 | 1130 | PDO | 08019365 | ON | NON-INTERSECTION | 3 | ICY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 761 | 070A | 242.00 | 3/8/2008 | 1430 | PDO | 08019368 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 762 | 070A | 242.00 | 3/8/2008 | 1430 | PDO | 08019367 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 763 | 070A | 242.00 | 3/18/2011 | 0550 | PDO | 11014342 | ON | NON-INTERSECTION | 2 | ICY | DARK-LIGHTED | NONE | N |
| 764 | 070A | 242.00 | 7/4/2011 | 1445 | PDO | 11036601 | ON | NON-INTERSECTION | 3 | DRY | DAYLIGHT | NONE | N |
| 765 | 070A | 242.00 | 3/10/2012 | 0845 | PDO | 12012239 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 766 | 070A | 242.00 | 7/19/2012 | 1345 | PDO | 12039750 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 767 | 070A | 242.00 | 11/18/2012 | 1415 | PDO | 12062830 | ON | NON-INTERSECTION | 4 | DRY | DAYLIGHT | NONE | N |
| 768 | 070A | 242.00 | 5/2/2012 | 1500 | PDO | 12023662 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 769 | 070A | 242.00 | 12/1/2012 | 1245 | PDO | 12066078 | ON | NON-INTERSECTION | 2 | DRY | DAYLIGHT | NONE | N |
| 770 | 070A | 242.00 | 7/21/2009 | 2227 | PDO | 09316565 | ON | NON-INTERSECTION | 1 | DRY | DARK-LIGHTED | NONE | N |
| 771 | 070A | 242.00 | 9/22/2009 | 1630 | PDO | 09056116 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 772 | 070A | 242.00 | 8/29/2010 | 0545 | PDO | 10051668 | ON | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 773 | 070A | 242.00 | 8/4/2012 | 0500 | PDO | 12045390 | ON | NON-INTERSECTION | 1 | DRY | DAWN OR DUSK | NONE | N |
| 774 | 070A | 242.00 | 8/6/2012 | 1115 | PDO | 12043952 | ON | NON-INTERSECTION | 1 | DRY | DAYLIGHT | NONE | N |
| 775 | 070A | 242.00 | 12/20/2008 | 1040 | PDO | 08076980 | OFF LEFT | NON-INTERSECTION | 2 | DRY W/VIS ICY ROAD TREATMENT | DAYLIGHT | NONE | N |
| 776 | 070A | 242.00 | 2/22/2010 | 0757 | PDO | 10009371 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | NONE | N |
| 777 | 070A | 242.00 | 2/23/2011 | 1430 | PDO | 11011997 | OFF RIGHT | NON-INTERSECTION |  | DRY | DAYLIGHT | NONE | N |
| 778 | 070A | 242.00 | 8/6/2011 | 1050 | PDO | 11041923 | OFF LEFT | NON-INTERSECTION |  | DRY | DAYLIGHT | NONE | N |
| 779 | 070A | 242.00 | 4/3/2012 | 1030 | PDO | 12015802 | OFF LEFT | NON-INTERSECTION | 1 | SNOWY | DAYLIGHT | SNOW/SLEET/HAIL | N |
| 780 | 070A | 242.00 | 6/9/2010 | 2200 | PDO | 10031028 | ON | NON-INTERSECTION | 1 | DRY | DARK-LIGHTED | NONE | N |


| \# | Accident Type | Direction 1 | Vehicle 1 | Factor 1 | Speed 1 | Vehicle Movement 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 729 | CONCRETE HIGHWAY BARRIER | W | SUV | DRIVER UNFAMILIAR WIAREA | 40 | GOING STRAIGHT |
| 730 | CONCRETE HIGHWAY BARRIER | W | SUV | DRIVER UNFAMILIAR W/AREA | 45 | GOING STRAIGHT |
| 731 | SIDESWIPE (SAME DIRECTION) | E | PASSENGER CAR/VAN | OTHER FACTOR | 60 | CHANGING LANES |
| 732 | REAR END | E | SUV | OTHER FACTOR | 40 | CHANGING LANES |
| 733 | REAR END | E | SUV | NONE APPARENT | 40 | SLOWING |
| 734 | REAR END | E | VEH COMBO (10,001 LBS AND OVER) | NONE APPARENT | 10 | ENTERING/LEAVING PARKED POSITION |
| 735 | REAR END | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | UK | GOING STRAIGHT |
| 736 | REAR END | E | SUV | NONE APPARENT | 10 | GOING STRAIGHT |
| 737 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 20 | OTHER |
| 738 | WILD ANIMAL | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 739 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 740 | GUARD RAIL | W | SUV | NONE APPARENT | UK | SPUN OUT OF CONTROL |
| 741 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | NONE APPARENT | 40 | GOING STRAIGHT |
| 742 | CONCRETE HIGHWAY BARRIER | W | SUV | ILLNESS/MEDICAL | 60 | GOING STRAIGHT |
| 743 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 744 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | 55 | SPUN OUT OF CONTROL |
| 745 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | NONE APPARENT | 65 | GOING STRAIGHT |
| 746 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | DRIVER INEXPERIENCE | 55 | SPUN OUT OF CONTROL |
| 747 | CONCRETE HIGHWAY BARRIER | W | PASSENGER CAR/VAN | NONE APPARENT | 50 | SPUN OUT OF CONTROL |
| 748 | CONCRETE HIGHWAY BARRIER | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 60 | SPUN OUT OF CONTROL |
| 749 | CONCRETE HIGHWAY BARRIER | W | SUV | NONE APPARENT | UK | GOING STRAIGHT |
| 750 | EMBANKMENT | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | MAKING LEFT TURN |
| 751 | EMBANKMENT | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 70 | SPUN OUT OF CONTROL |
| 752 | INVOLVING OTHER OBJECT | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 70 | SPUN OUT OF CONTROL |
| 753 | WILD ANIMAL | E | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 754 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 55 | SPUN OUT OF CONTROL |
| 755 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 40 | SLOWING |
| 756 | GUARD RAIL | E | PASSENGER CAR/VAN | OTHER FACTOR | 55 | GOING STRAIGHT |
| 757 | GUARD RAIL | W | SUV | EVADING LAW ENFORCEMENT OFFICER | 45 | DROVE WRONG WAY |
| 758 | CRASH CUSHION/TRAFFIC BARREL | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 70 | GOING STRAIGHT |
| 759 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 60 | SPUN OUT OF CONTROL |
| 760 | REAR END | E | PASSENGER CAR/VAN | DRIVER UNFAMILIAR W/AREA | 15 | SLOWING |
| 761 | REAR END | E | SUV | NONE APPARENT | 15 | SLOWING |
| 762 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 15 | GOING STRAIGHT |
| 763 | REAR END | W | PICKUP TRUCK/UTILITY VAN | AGRESSIVE DRIVING | 55 | GOING STRAIGHT |
| 764 | REAR END | E | PASSENGER CAR/VAN | DISTRACTED/PASSENGER | 25 | SLOWING |
| 765 | REAR END | W | SUV | AGRESSIVE DRIVING | UK | GOING STRAIGHT |
| 766 | REAR END | E | PASSENGER CAR/VAN | NONE APPARENT | 15 | GOING STRAIGHT |
| 767 | REAR END | E | SUV | NONE APPARENT | 15 | SLOWING |
| 768 | SIDESWIPE (SAME DIRECTION) | E | PICKUP TRUCK/UTILITY VAN | DUI, DWAI, DUID | 75 | GOING STRAIGHT |
| 769 | SIDESWIPE (SAME DIRECTION) | E | SUV | AGRESSIVE DRIVING | 60 | CHANGING LANES |
| 770 | WILD ANIMAL | W | SUV | NONE APPARENT | 60 | GOING STRAIGHT |
| 771 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 772 | WILD ANIMAL | W | PICKUP TRUCK/UTILITY VAN | NONE APPARENT | 57 | GOING STRAIGHT |
| 773 | WILD ANIMAL | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | GOING STRAIGHT |
| 774 | WILD ANIMAL | W | SUV | NONE APPARENT | 55 | GOING STRAIGHT |
| 775 | GUARD RAIL | E | PASSENGER CAR/VAN | AGRESSIVE DRIVING | 75 | PASSING |
| 776 | GUARD RAIL | W | PASSENGER CAR/VAN | OTHER FACTOR | 55 | GOING STRAIGHT |
| 777 | GUARD RAIL | W | SUV | ASLEEP AT THE WHEEL | 55 | GOING STRAIGHT |
| 778 | GUARD RAIL | W | PASSENGER CAR/VAN | DUI, DWAI, DUID | 60 | WEAVING |
| 779 | CONCRETE HIGHWAY BARRIER | E | PASSENGER CAR/VAN | NONE APPARENT | 40 | SPUN OUT OF CONTROL |
| 780 | LARGE ROCKS/BOULDER | W | PASSENGER CAR/VAN | NONE APPARENT | 60 | OTHER |

## APPENDIX B SAFETY IMPLICATION OF GEOMETRIC CHANGES USING CRASH MODIFICATION FACTORS (CMF)

## PPSL Safety Calculations <br> I-70 (MP 230.0 to 242.0) <br> Eastbound Only

Crash Analyses Related to Changes in Shoulder/Lane Widths \& Rumble Strips
Mainline Total Crashes (1/1/2008 to 12/31/2012-5 years)

| Eastbound |  |  |  | Westbound |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Weekday <br> (M-F) | Saturday | Sunday | Total | Weekday <br> (M-F) | Saturday | Sunday | Total | Total |
| 206 | 66 | 128 | 400 | 234 | 53 | 50 | 337 | 737 |

Crash Modification Factor (CMF) Calculations for changes in shoulder and lane widths Off-Peak

| 39' (off-peak) S\&L CMF:1.03 | 12' wide Shldr: 4' to 12'(8') CMF: 0.92 (HSM 13-8) | combined w/shldr | $\begin{aligned} & \text { 11' wide } \\ & \text { Lane width: } \\ & \hline 12^{\prime} \text { to } 11^{\prime} \\ & \text { CMF: } 1.03 \\ & \text { (HSM 13-4) } \end{aligned}$ | $\begin{aligned} & \text { 12' wide } \\ & \text { Lane width: } \\ & \hline 12 \text { : } \\ & \text { CMF: } 1.00 \end{aligned}$ | 4' wide Shldr: $10^{\prime}\left(8^{\prime}\right)$ to 4' $^{\prime}$ CMF: $1.09^{\prime}$ (HSM - 13-8) |
| :---: | :---: | :---: | :---: | :---: | :---: |

Reference: Highway Safety Manual, $1^{\text {st }}$ Edition, AASHTO, 2010, Volume 3
Calculation: Off-peak crashes - Monday through Saturday: 272
Off-peak CMF: 1.03
Increased crashes: 280
Delta: $\quad+8$ additional crashes
Crash Modification Factor (CMF) Calculations for changes in shoulder and lane widths Peak

| 39' (peak) <br> S\&L CMF:1.23 | 1' wide (equivalent) Shldr: 4' to 1' CMF: 1.06 (HSM 13-8) | 11' wide Lane width: <br> 12' to 11' <br> CMF: 1.03 <br> (HSM 13.4) | 11' wide Lane width: 12' to $11^{\prime}$ CMF: 1.03 (HSM 13-4) | 12' wide <br> Lane width: <br> $12^{\prime}$ <br> CMF: 1.00 | ```4' wide Shldr: \(10^{\prime}\left(8^{\prime}\right)\) to 4' CMF: 1.09' (HSM - 13-8)``` |
| :---: | :---: | :---: | :---: | :---: | :---: |

Reference: Highway Safety Manual, $1^{\text {st }}$ Edition, AASHTO, 2010, Volume 3
Calculation: Off-peak crashes - Sunday: 128
Off-peak CMF: 1.23
Increased crashes: $\quad 157$
Delta: +29 additional crashes
Total Additional Crashes of all types: +37 additional crashes

## Single Vehicle Run of the Road (SVROR) Crashes - Eastbound

Mainline SVROR Crashes (1/1/2008 to 12/31/2012 - 5 years)

| Eastbound |  |  |  | Westbound |  |  |  |  |
| ---: | ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: |
| Weekday <br> (M-F) | Saturday | Sunday | Total | Weekday <br> (M-F) | Saturday | Sunday | Total | Total |
| 73 | 12 | 16 | 101 | 103 | 18 | 17 | 138 | 239 |

Crash Modification Factor (CMF) Calculations for changes in rumble strips
Off-Peak

| 39' (off-peak) | $12^{\prime}$ wide <br> Rumble strip: | combined <br> w/shldr | $11^{\prime}$ wide | $12^{\prime}$ wide | 4 ' wide <br> SVROR |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Rumble strip: <br> right edge of <br> shoulder <br> CMF: 1.00 |  |  | Rumb <br> yes <br> CMF: 1.00 |  |  |

Reference: Highway Safety Manual, $1^{\text {st }}$ Edition, AASHTO, 2010, Volume 3
Calculation: Off-peak crashes - Monday through Saturday: No Change

Crash Modification Factor (CMF) Calculations for changes in rumble strips
Peak

| 39' (peak) middle \& right lanes <br> SVROR <br> CMF:1.00 | 1' wide (equivalent) Rumble strip: yes CMF: 1.00 | 11' wide Rumble strip: right edge of lane CMF: 1.00 | 11' wide | 12' wide | ```4' wide Rumble strip: yes CMF: 1.00``` |
| :---: | :---: | :---: | :---: | :---: | :---: |


| 39' (peak) - <br> managed lane <br> only | 1' wide <br> (equivalent) <br> Rumble strip: | $11^{\prime}$ wide <br> Rumble strip: <br> right edge of | $11^{\prime}$ wide | $12^{\prime}$ wide | 4' wide |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SVROR | lane |  |  | Rumble strip: |  |
| CMF:1.10 | CMF: 1.10 | CMF: 1.00 |  |  | yes |
| CMF: 1.00 |  |  |  |  |  |

Reference: Highway Safety Manual, $1^{\text {st }}$ Edition, AASHTO, 2010, Volume 3

| Calculation: | Peak crashes - Sunday: | 16 |
| :--- | :--- | :--- |
|  | Off-peak CMF (modified to account for ML volume: | $\frac{1.0+(0.10 * 23 \%)=1.023}{16.4(\text { say } 17)}$ |
|  | Increased crashes: | +1 additional crashes |

Total Additional Crashes attributable to Shoulder/Lane Widths \& Rumble Strips: +38 crashes

## APPENDIX C SAFETY IMPLICATIONS OF CONGESTION REDUTION

## Crash Analyses Related to Congestion Reduction during Peak Periods

Analyses based on: Relationship between Traffic Density, Speed and Safety and Implication on Setting Variable Speed Limits on Freeways, Kononov, et. al., TRB 2012.

As shown on following sheets:

- Crash Rate increases with higher hourly volumes
- Calculation of Crash Rate reduction with reduced congestion:
- Current crash rate (index):
37.32
- Crash rate index with PPSL/ML: 18.68
- Reduction factor: 0.5006
- Net reduction in total crashes:
- Net reduction:
- Total reduction:
- Net reduction in Rear-end crashes:
- Net reduction:
- Total reduction:
$128 * 0.5006=64$
-64 crashes
$38-64=-26(-26 / 400=6.5 \%)$
94 * $0.5006=47$
-47 crashes
$38-47=-9(-9 / 400=2.2 \%)$



## Fitted Curve for I-70 Mountain Corridor

Relationship between Traffic Denvisy, Speed and Safety and Implication on Settin gVariable Speed Limits on Freeways, Kononov, et. al., TRB 2012.

| EB Flow (vphpl) | Model EB Crash Rate |
| :---: | ---: |
| 300 | 0.107319998 |
| 400 | 0.107840363 |
| 500 | 0.109586809 |
| 600 | 0.114210795 |
| 700 | 0.124640166 |
| 800 | 0.145592598 |
| 900 | 0.184145132 |
| 1000 | 0.250316923 |
| 1100 | 0.35758609 |
| 1200 | 0.523208542 |
| 1300 | 0.76814074 |
| 1400 | 1.116307137 |
| 1500 | 1.592935113 |
| 1600 | 2.221766607 |
| 1700 | 3.021210073 |
| 1800 | 3.999932633 |
| 1900 | 5.152900919 |
| 2000 | 6.459196108 |

Existing Volumes - January 30, 2011

|  | 9:00 AM | 10:00 AM | 11:00 AM | 12:00 PM | 1:00 PM | 2:00 PM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | 7:00 PM | 8:00 PM | 9:00 PM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/30/11 | 1826 | 2909 | 2806 | 3308 | 3303 | 3460 | 3356 | 3294 | 3035 | 3062 | 2962 | 2379 | 991 |
| Volume per lane | 913 | 1455 | 1403 | 1654 | 1652 | 1730 | 1678 | 1647 | 1518 | 1531 | 1481 | 1190 | 496 |
| EB Crash Rate | 0.1927 | 1.3761 | 1.1306 | 2.6535 | 2.6335 | 3.3148 | 2.8453 | 2.5975 | 1.7030 | 1.7879 | 1.5024 | 0.5058 | 0.1094 |
| MVMT (MP 231 to 241) | 0.9601 | 1.5295 | 1.4753 | 1.7393 | 1.7366 | 1.8192 | 1.7645 | 1.7319 | 1.5957 | 1.6099 | 1.5573 | 1.2508 | 0.5210 |
| Crashes/Yr for Sundays |  | 2.10 | 1.67 | 4.62 | 4.57 | 6.03 | 5.02 | 4.50 | 2.72 | 2.88 | 2.3 | 0.63 | 0.06 |

Total $\quad$| 10a to $8 p$ |  |
| :---: | :---: | :---: |
| Average | per lane |
| volume |  |
| 3150 | 1575 |

37.32

I-70 PPSL - Volumes from DynusT Model (from Atkins) (based on January 30, 2011 or January 31, 2010

| $m$ DynusT Model ( | kins) (based | on Janua | y 30, 2011 | or January | 31, 2010) |  |  |  |  |  |  |  |  |  |  |  | Average | volume |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hourly | 9:00 AM | 10:00 AM | 11:00 AM | 12:00 PM | 1:00 PM | 2:00 PM | 3:00 PM | 4:00 PM | 5:00 PM | 6:00 PM | 7:00 PM | 8:00 PM | 9:00 PM | 10:00 PM |  |  |  |  |
| GPL | 817 | 2112 | 2439 | 2620 | 2934 | 2830 | 2964 | 2958 | 2976 | 2972 | 2647 | 2627 | 1973 | 588 | 33457 |  | 2745 | 1373 |
| GPL - Volume per lane | 409 | 1056 | 1220 | 1310 | 1467 | 1415 | 1482 | 1479 | 1488 | 1486 | 1324 | 1314 | 987 | 294 |  |  | 1373 |  |
|  | 0.1080 | 0.3104 | 0.5710 | 0.8030 | 1.4356 | 1.1878 | 1.5071 | 1.4928 | 1.5357 | 1.5262 | 0.8500 | 0.8151 | 0.2414 |  |  |  |  |  |
| MVMT (MP 231 to 241) | 0.4296 | 1.1104 | 1.2824 | 1.3775 | 1.5426 | 1.4879 | 1.5584 | 1.5552 | 1.5647 | 1.5626 | 1.3917 | 1.3812 | 1.0373 |  |  |  |  |  |
| Crashes/Yr for Sundays | 0.05 | 0.34 | 0.73 | 1.11 | 2.21 | 1.77 | 2.35 | 2.32 | 2.40 | 2.38 | 1.18 | 1.13 | 0.25 |  |  | 18.23 |  |  |
| ML | 0 | 270 | 524 | 594 | 829 | 659 | 762 | 724 | 703 | 675 | 565 | 432 | 200 | 22 | 6959 |  | 631 | 631 |
|  |  | 0.1073 | 0.1107 | 0.1139 | 0.1568 | 0.1204 | 0.1376 | 0.1297 | 0.1253 | 0.1220 | 0.1126 | 0.1084 | 0.10732 |  | 40416 |  |  |  |
| MVMT (MP 231 to 241) | 0.0000 | 0.1420 | 0.2755 | 0.3123 | 0.4359 | 0.3465 | 0.4006 | 0.3807 | 0.3696 | 0.3549 | 0.2971 | 0.2271 | 0.1052 |  |  |  |  |  |
| Crashes/Yr for Sundays | 0.00 | 0.02 | 0.03 | 0.04 | 0.07 | 0.04 | 0.06 | 0.05 | 0.05 | 0.04 | 0.03 | 0.02 | 0.01 |  |  | 0.45 |  |  |
| Total Volume | 817 | 2382 | 2963 | 3214 | 3763 | 3489 | 3726 | 3682 | 3679 | 3647 | 3212 | 3059 | 2173 | 610 |  |  | 3376 | 1125 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Tota | Crash Rate | 18.68 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Crash | eduction: | 50.06\% |  |  |

## APPENDIX D MANAGED LANE ACCESS AND VARIABLE SPEED LIMITS (MEMORADUM DATED NOVEMBER 4, 2013)

FELSBURG
HOLT \&
ULLEVIG
engineering paths to transportation solutions
November 4, 2013

## MEMORANDUM

TO: Andi Schmidt, David Swenka, Laycee Kolkman, Scott Thomas
FROM: David E. Hattan, P.E.
SUBJECT: Managed Lane Access and Variable Speed Limits
PROJECT: I-70 Peak Period Shoulder Lane (PPSL)
FHU \# 11-111-09 SA 17

Based on recent discussions about the safety implications of the speed differential that will be created during peak periods on eastbound I-70 between the managed lane (ML) and the adjacent general purpose lane (GPL), I have reviewed published research on this topic. As a result, CDOT should consider not providing secondary access/egress points for the ML. On the other hand, CDOT should consider including variable speed limit signs (VSL) as an element of the proposed facility.

## Background

A managed lane on eastbound I-70 is proposed between Empire Junction (Exit 231) and US 6 (Exit 244) at the base of Floyd Hill. The ML will have many operational characteristics of other preferential lane treatments, such as a high occupancy vehicle lane (HOV) or a high occupancy toll lane (HOT). The ML will operate during peak Sunday afternoons (and holidays and some Saturdays). At all other times, the ML serve as a wide ( 12 feet) breakdown shoulder on the left side of the road. Due to the pavement width available on I-70, the proposed ML will be a unique facility with certain characteristics of all three types of preferential lane separation (see following paragraph). It will appear to have contiguous separation since there will only be an 8 -inch solid white stripe to designate the $\mathrm{ML} /$ shoulder. However, rumble strips will be grooved into the pavement along the white stripe that serve two purposes: 1) warn drivers that they are leaving the travel lane during non-peak time and 2) deter drivers from crossing the line when the ML is operational by giving them tactile feedback that they entering or leaving the ML where they shouldn't be.

There are three different ways that preferential lanes can be separated from the adjacent GPL:

- Barrier separation - essentially a parallel roadway separated from the adjacent GPL by a permanent concrete barrier (typically Type 7). There are a limited number of well-designed access points. These lanes have shoulders and acceleration or deceleration lanes at ingress and egress points. The bus/HOT lane along l-25 north of downtown Denver is a local example.
- Buffer separation - The HOV lane is separated from the adjacent GPL by a two- to four-foot painted buffer. There are two solid white stripes that prohibit cars from crossing between
the lanes. This separation is intended to allow fewer interruptions to traffic flows and offer protection to freely flowing traffic in the HOV lane independent of traffic conditions in the GPL. There are typically access points to the HOV lane between interchanges where the double solid lines are dropped and a single skip stripe line is used. There is appropriate signing at these locations. US 36 in the vicinity of Federal Boulevard is a local example. It is currently being extended to the west.
- Contiguous separation- These facilities are adjacent to the general purpose lane with no buffer separation - only a single or double paint stripe. Vehicles can enter or exit the preferential lane facility at specified locations or continuously along the freeway such that lane changing maneuvers are not concentrated at specified locations. Traffic operations in a continuous access preferential lane are more frequently interrupted by the lane changing vehicles. There are a number of facilities with continuous access in Northern California.


## Research Findings

## Managed and High Occupancy Vehicle Lanes

The literature applicable to the proposed I-70 ML is primarily based on experience with HOV lanes around the country. In 2005, the Texas Transportation Institute (1) found that during peak traffic time, traffic in HOV lanes could at times move up to 35 mph faster than general purpose lanes, which is consistent with the fundamental theory the HOV lane concept. When slower cars tried to merge into the faster HOV lane, they were often rear-ended by traffic unable to slow down in time. Likewise, the faster HOV traffic trying to merge into slower, regular traffic also caused crashes. As a result, the left-lane injury rate soared by at least 150 percent. This study also found that only HOV lanes separated by permanent concrete barriers had a lower overall risk of crashes.

A more recent Texas Transportation Institute study (2) reviewed two highly congested freeways with HOV lanes in Dallas. From the freeway characteristics and a review of crash data within each corridor, it appears that the extensive congestion in the general purpose lanes (i.e., bumper-tobumper traffic) makes it difficult for vehicles in the HOV lane to find gaps in Lane 1 to change lanes easily. Also, vehicles in the slow-moving general purpose lanes that want to enter the HOV lane must first change lanes in the HOV lane and then accelerate up to speed. In either situation, the speed differential between the HOV lane and Lane 1 appears to be a factor in crash occurrence. The following factors all contribute to increased injury crash rates:

- High daily traffic volumes and extensive congestion in the general purpose lanes,
- Ramp-pair combinations at or near the minimum ramp terminal spacing as recommended by AASHTO,
- Reduced HOV cross section, and
- Speed differential between the HOV and adjacent general purpose-lane traffic.

It is believed that the last two items in this list are the most significant factors.
A California study (3) isolated likely causes for the higher accident rates. Because HOV facilities take up a significant amount of additional road space compared to GPL, the amount of shoulder space is often reduced. This created a source of conflict. Collision rates diminish with an increase in shoulder width, regardless of the type of access associated with the HOV lane. In addition, the highest accident rates were found to be within 0.3 miles of an on-ramp or off-ramp for the limited access lanes. This suggests that concentrating the merge areas compounded the risk of accidents caused by the radical speed differential between HOV and general purpose traffic. A more detail investigation of three locations that showed significantly higher collision rates than average revealed that they possessed high traffic volumes in the HOV lane during peak hours (1,000 -

October 31, 2013
Memorandum discussing Managed Lane Access and Variable Speed Limits
Page 3

1,200 vehicles per hour versus $700-800 \mathrm{vph}$ on average). The findings from this research show that the HOV facility with limited access offers no safety advantages over the one with continuous access. The combined collision rates of the HOV and its adjacent lane were higher for the HOV facility with limited access.

## Variable Speed Limits

One control measure that is proposed for the PPSL is variable speed limits (VSLs) where the display on the speed limits signs can be changed in response to prevailing traffic conditions. VSL installations were first introduced in Germany more than three decades ago; today, numerous VSL installations are encountered in many European countries, in North America, and elsewhere (4). In most cases, VSLs are mandatory, that is, legally equivalent to fixed speed limits and may ever be enforced to increase driver compliance and hence impact. A main targeted impact of VSLs is enhanced traffic safety. This positive impact on traffic safety is due to speed reduction and speed homogenization, which are correlated with a reduction in accident probability. Multiyear evaluations of VSL impact on traffic safety indicate a reduction in accident numbers by as much as $20 \%$ to $30 \%$. On a number of freeways in Europe (5), shoulders are used dynamically to create an additional travel lane when conditions are appropriate. Each country has a general practice of reducing speeds when the shoulder is being used as a travel lane.

## Recommendations

CDOT should consider the following information in its efforts to improve safety in designing the l-70 PPSL:

- Since there is no space available to create a shoulder or a buffer for the ML, it is important to consider that rumble strips be grooved in the pavement at the right edge of the ML/breakdown shoulder. This would serve as substitute for either a buffer or a barrier and hopefully reduce the amount of lane changing.
- CDOT should consider limiting the number of access points to the ML, possibly only an entrance downstream of the US 40 on-ramp (Exit 231 - Empire Junction) might be provided. A secondary access east of the Dumont interchange (Exit 235) has been considered. Since both the Dumont and Downieville (Exit 234) interchanges do no serve large traffic generators, there limited on-ramp volumes at both on-ramps. The primary users of a secondary access point would be traffic already on I-70 (from beyond Georgetown on I-70 or US 40) that didn't take advantage of the initial access point. They would likely make the decision to now use the ML based on congested conditions in the GPL. This could create the differential in speeds that has been found to cause crashes at access points to buffer separated HOV lanes in Texas and California.
- CDOT should likewise consider limiting the number of exit points, with possibly only an exit/closure before the US 6 interchange (Exit 244 - Kermitts). A secondary egress has been considered west of the West Idaho Springs interchange (Exit 239). This has been proposed to allow I-70 motorists in the ML to exit and patronize the businesses in Idaho Springs. Again, there could be safety concerns with this proposed egress due to the possible speed differential of traffic in the adjacent lanes. The assumption is that almost all users of the ML would be paying the toll so minimize their travel time to the Denver area and would not want to stop at an intermediate point. However, there could be just enough drivers wanting to make this maneuver that their slowing down to merge would be unexpected and thus could lead to crashes.
- The toll rate charged for the ML will have a number of objectives and should undergo an on-going optimization process:
- High enough to limit volumes to keep the lane as safe as possible given the very limited shoulder space available.
- Low enough to encourage use of the lane and keep ML traffic volumes high enough that they don't travel too fast but still provide a travel time advantage for ML traffic.
- Variable Speed Limit (VSL) signs should be considered through the PPSL/ML corridor. They would serve to moderate speed differentials and harmonize traffic between the ML and GPL. ML speeds will always be higher than the adjacent general purpose lane but not too high.
- All aspects of the PPSL/ML should be closely monitored on an on-going basis so that safety and capacity are appropriately balanced for motorists on I-70 and residents in the corridor.


## References

(1) Crash Analysis of Selected High-Occupancy Vehicle Facilities in Texas: Methodology, Findings, and Recommendations, Cothron, Ranft, et.al. Texas Transportation Institute, May 2004.
(2) Safety Evaluation of Buffer-Separated High-Occupancy Vehicle Lanes in Texas, Cooner and Ranft, Transportation Research Board, TRR 1958, 2006.
(3) Safety Performance of High-Occupancy Vehicle (HOV) Facilities: Evaluation of HOV Lane Configurations in California, Jang, Chung, et.al. Transportation Research Board, TRR 2099, 2009.
(4) Effects of Variable Speed Limits on Motorway Traffic Flow, Papageorgiou, et.al. Transportation Research Board, TRR 2047, 2008.
(5) Freeway Geometric Design for Active Traffic management in Europe, FHWA, March 2011


[^0]:    ${ }^{1}$ Hauer, E., (1999) Safety Review of Highway 407: Confronting Two Myths. TRB
    ${ }^{2}$ Kononov, J. \& Allery, B. (2003) Level of Service of Safety-Conceptual Blueprint and Analytical Framework. Presented at the TRB Annual Meeting, Washington D.C. (January 2003)

